
Users and security
• Authentication

– Making sure a user is who they say they are
– ...on every request!

• Authorization
– Making sure a user can only get to information they are

supposed to see
– Making sure a user can only perform actions they are

supposed to

Authentication
• Username/password combination

– Most basic level of authentication
1. Get username/password from user
2. Verify against username/password stored in database

– Security concerns
• Passwords stolen from database
• Passwords intercepted in transit
• Passwords sent to a rogue server
• Password strength
• Social engineering

Database-level security
• The obvious stuff

– Deny everything, allow what is necessary
• Isolate, firewall

• Storing passwords (and other confidential
information)
– Don’t unless you have to!
– Hash the password and store that instead

• One-way, cannot recover original
• No one can get the actual passwords from the db

– For verification, hash the incoming password and compare
to the stored hash

Hashing
• Vulnerable to brute-force attacks

– Attacker gets the hash
– Attacker guesses passwords and hashes them until one

matches
– Not as hard as it sounds

• Faster hardware, weak passwords, lookup tables

• MD5, SHA1
– Commonly available, out of date

• Public tables exist to crack any MD5 hash for passwords up to 8
characters

• SHA256, SHA521, BLOWFISH
– Much better options, designed to run slowly

• But still can be brute-forced

Hashing with salts
• Make brute-force less efficient, leverage complexity

– Longer passwords
– Slower hashing algorithms
– Larger space of possible hashes

• Salting
– Concatenate a random string to each password before

hashing
– Store the random string (not secret) with the hash
– Defeats look-up tables that pre-calculate hashes

Example Hash
$2a$10$KssILxWNR6k62B7yiX0GAe2Q7wwHlrzhF3LqtVvpyvHZf0MwvNfVu

• Bcrypt MCF format:
– $<type>$<cost>$<salt><hash>
– Type identifies the algorithm:

• 1 = md5
• 2, 2a, 2y = blowfish variants

– Cost is the number of iterations to run (making it slower)
– Salt is 22 characters, hash is 31

Encryption
• Two-way encryption

– Allows data to be encrypted and decrypted
– AES is the standard

• Implemented in MySQL and in PHP (Mcrypt)

– Relies on a secure key

• If the key is compromised, all encrypted data can be
decrypted!
– Again, only use if recovery is absolutely necessary (credit

cards, soc sec #s, etc)

Use tested code
• Don’t roll your own security code!

– Too easy to make errors
– Especially with complex systems like AES

• Use an established library
– Already well tested
– Verified by people who actually understand the math
– PHPass
– MySQL AES_ENCRYPT/AES_DECRYPT

Network-level security
• What’s going over the wire?

– Data from client to server
• Passwords, for instance

– Data back from server to client
• URL query strings
• Hidden form fields

– Data from web app to database?
• Where does encryption happen?

Encrypted network traffic
• Everything on the internet wires is public!

– Too many points of failure to control
– You must encrypt any private data

• A secret message for you:

BDB FKHHVH

Encrypted network traffic
• Everything on the internet wires is public!

– Too many points of failure to control
– You must encrypt any private data

• Encrypting a conversation requires a priori
information
– You must have a trusted, private conversation first

• Solution: asymmetric encryption

Asymmetric encryption
• Public key/private key

– Public key is given out to everyone
– Private key is kept secret

• To send a private message:
– Encrypt with the public key
– Can only be decrypted with the private key
– Message is private

• To receive a message:
– Encrypted with private key
– Can be decrypted by anyone with the public key
– Verifies that it was sent by the private key holder

How does it work?
• Math competition!

How does it work?
• Math competition!

– 71 and 37 are prime numbers
– What is 71 * 37?

How does it work?
• Math competition!

– 158987 is the product of two prime numbers
– What are those prime numbers?

How does it work?
• Math competition!

– 158987 is the product of two prime numbers
– What are those prime numbers?

• (919 and 173)

How does it work?
• Based on a problem that is:

– Very hard to solve in one direction
– Easy to solve in the other direction

• Factoring prime numbers
– Find the largest prime factors of 293492849128492911

• Very hard to solve, a lot of guessing and checking

– But given the factors, easy to generate the original number

Public-key encryption
• This map is my public key

(everyone can see)
• To send me a secret

number:
– Draw out that map

Public-key encryption
• This map is my public key

(everyone can see)
• To send me a secret

number:
– Draw out that map
– Put numbers on each corner

(can be negative) that add up
to the number you chose

3
2

8

4

1

9

2

6

4

-4

Public-key encryption
• This map is my public key

(everyone can see)
• To send me a secret

number:
– Draw out that map
– Put numbers on each corner

(can be negative) that add up
to the number you chose

– For each corner, add the
number on that corner to the
numbers on all connected
corners

– Tell me those totals only

3
2

8

4

1

9
14

15

14

2

6

4

-4

Public-key encryption
• This map is my private key

Public-key encryption
• This map is my private key
• Marked intersections

– Indicate nodes that
separate the graph

– The sum of those nodes is
the original number

Public-key encryption
• This map is my private key
• Marked intersections

– Indicate nodes that
separate the graph

– The sum of those nodes is
the original number

– Finding the separating
intersections on a map with
100 nodes is a hard
problem

– Factoring primes is harder

Encrypted network traffic
• Transport Layer Security (TLS)

– Encryption of HTTP traffic
– Used to be called SSL
– Pretty universally supported

• Starting a private (encrypted) conversation
1. Get the public key of the server
2. Encrypt a message with the public key and send

• Typically parameters for further encryption

3. Only the server can decrypt it!

Encrypted network traffic
• Transport Layer Security (TLS)

– Encryption of HTTP traffic
– Used to be called SSL
– Pretty universally supported

• Starting a private (encrypted) conversation
1. Get the public key of the server
2. Encrypt a message with the public key and send

• Typically parameters for further encryption

3. Only the server can decrypt it!
(See any problems?)

Encrypted Network Traffic
• Anyone can claim to be the server

– Man-in-the-middle attack
– Send you bogus public key

• Solution?
– Certificate authorities

• Ask CA to verify public key actually belongs to server

Encrypted Network Traffic
• Anyone can claim to be the server

– Man-in-the-middle attack
– Send you bogus public key

• Solution?
– Certificate authorities

• Known reliable source
• Ask CA to verify public key actually belongs to server
(See any problems?)

Encrypted Network Traffic
• Anyone can claim to be the server

– Man-in-the-middle attack
– Send you bogus public key

• Solution?
– Certificate authorities

• Known reliable source
• Ask CA to verify public key actually belongs to server
(See any problems?)
• Man-in-the-middle attack
• Send you bogus verification
• Solution?

Encrypted Network Traffic
• Anyone can claim to be the server

– Man-in-the-middle attack
– Send you bogus public key

• Solution?
– Certificate authorities

• Known reliable source
• Ask CA to verify public key actually belongs to server
(See any problems?)
• Man-in-the-middle attack
• Send you bogus verification
• Solution?

– Web browser has public key for known CAs a priori

Back to authentication
• Security concerns

– Passwords stolen from database
– Passwords intercepted in transit
– Passwords sent to a rogue server

• Certificate Authorities

– Password strength
– Social engineering

• Session IDs
– Login credentials not resent with every request
– Encryption to prevent session hijacking
– Rotating session IDs

	Users and security
	Authentication
	Database-level security
	Hashing
	Hashing with salts
	Example Hash
	Encryption
	Use tested code
	Network-level security
	Encrypted network traffic
	Encrypted network traffic
	Asymmetric encryption
	How does it work?
	How does it work?
	How does it work?
	How does it work?
	How does it work?
	Public-key encryption
	Public-key encryption
	Public-key encryption
	Public-key encryption
	Public-key encryption
	Public-key encryption
	Encrypted network traffic
	Encrypted network traffic
	Encrypted Network Traffic
	Encrypted Network Traffic
	Encrypted Network Traffic
	Encrypted Network Traffic
	Back to authentication

