
Users and security 
• Authentication 

– Making sure a user is who they say they are 
– ...on every request! 

• Authorization 
– Making sure a user can only get to information they are 

supposed to see 
– Making sure a user can only perform actions they are 

supposed to 



Authentication 
• Username/password combination 

– Most basic level of authentication 
1. Get username/password from user 
2. Verify against username/password stored in database 

– Security concerns 
• Passwords stolen from database 
• Passwords intercepted in transit 
• Passwords sent to a rogue server 
• Password strength 
• Social engineering 



Database-level security 
• The obvious stuff 

– Deny everything, allow what is necessary 
• Isolate, firewall 

• Storing passwords (and other confidential 
information) 
– Don’t unless you have to! 
– Hash the password and store that instead 

• One-way, cannot recover original 
• No one can get the actual passwords from the db 

– For verification, hash the incoming password and compare 
to the stored hash 



Hashing 
• Vulnerable to brute-force attacks 

– Attacker gets the hash 
– Attacker guesses passwords and hashes them until one 

matches 
– Not as hard as it sounds 

• Faster hardware, weak passwords, lookup tables 

• MD5, SHA1 
– Commonly available, out of date 

• Public tables exist to crack any MD5 hash for passwords up to 8 
characters 

• SHA256, SHA521, BLOWFISH 
– Much better options, designed to run slowly 

• But still can be brute-forced 



Hashing with salts 
• Make brute-force less efficient, leverage complexity 

– Longer passwords 
– Slower hashing algorithms 
– Larger space of possible hashes 

• Salting 
– Concatenate a random string to each password before 

hashing 
– Store the random string (not secret) with the hash 
– Defeats look-up tables that pre-calculate hashes 



Example Hash 
$2a$10$KssILxWNR6k62B7yiX0GAe2Q7wwHlrzhF3LqtVvpyvHZf0MwvNfVu 

• Bcrypt MCF format: 
– $<type>$<cost>$<salt><hash> 
– Type identifies the algorithm: 

• 1 = md5 
• 2, 2a, 2y = blowfish variants 

– Cost is the number of iterations to run (making it slower) 
– Salt is 22 characters, hash is 31 



Encryption 
• Two-way encryption 

– Allows data to be encrypted and decrypted 
– AES is the standard 

• Implemented in MySQL and in PHP (Mcrypt) 

– Relies on a secure key 

• If the key is compromised, all encrypted data can be 
decrypted! 
– Again, only use if recovery is absolutely necessary (credit 

cards, soc sec #s, etc) 



Use tested code 
• Don’t roll your own security code! 

– Too easy to make errors 
– Especially with complex systems like AES 

• Use an established library 
– Already well tested 
– Verified by people who actually understand the math 
– PHPass 
– MySQL AES_ENCRYPT/AES_DECRYPT 



Network-level security 
• What’s going over the wire? 

– Data from client to server 
• Passwords, for instance 

– Data back from server to client 
• URL query strings 
• Hidden form fields 

– Data from web app to database? 
• Where does encryption happen? 

 



Encrypted network traffic 
• Everything on the internet wires is public! 

– Too many points of failure to control 
– You must encrypt any private data 

• A secret message for you: 
 
 

BDB FKHHVH 



Encrypted network traffic 
• Everything on the internet wires is public! 

– Too many points of failure to control 
– You must encrypt any private data 

• Encrypting a conversation requires a priori 
information 
– You must have a trusted, private conversation first 

 

• Solution: asymmetric encryption 



Asymmetric encryption 
• Public key/private key 

– Public key is given out to everyone 
– Private key is kept secret 

• To send a private message: 
– Encrypt with the public key 
– Can only be decrypted with the private key 
– Message is private 

• To receive a message: 
– Encrypted with private key 
– Can be decrypted by anyone with the public key 
– Verifies that it was sent by the private key holder 

 



How does it work? 
• Math competition! 
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How does it work? 
• Math competition! 

– 158987 is the product of two prime numbers 
– What are those prime numbers? 

• (919 and 173) 

 



How does it work? 
• Based on a problem that is: 

– Very hard to solve in one direction 
– Easy to solve in the other direction 

• Factoring prime numbers 
– Find the largest prime factors of 293492849128492911 

• Very hard to solve, a lot of guessing and checking 

– But given the factors, easy to generate the original number 



Public-key encryption 
• This map is my public key 

(everyone can see) 
• To send me a secret 

number: 
– Draw out that map 
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Public-key encryption 
• This map is my public key 

(everyone can see) 
• To send me a secret 

number: 
– Draw out that map 
– Put numbers on each corner 

(can be negative) that add up 
to the number you chose 

– For each corner, add the 
number on that corner to the 
numbers on all connected 
corners 

– Tell me those totals only 

3 
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8 

4 

1 

9 
14 

15 

14 

2 

6 

4 

-4 



Public-key encryption 
• This map is my private key  
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– Indicate nodes that 
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the original number 



Public-key encryption 
• This map is my private key  
• Marked intersections 

– Indicate nodes that 
separate the graph 

– The sum of those nodes is 
the original number 

– Finding the separating 
intersections on a map with 
100 nodes is a hard 
problem 

– Factoring primes is harder 



Encrypted network traffic 
• Transport Layer Security (TLS) 

– Encryption of HTTP traffic 
– Used to be called SSL 
– Pretty universally supported 

• Starting a private (encrypted) conversation 
1. Get the public key of the server 
2. Encrypt a message with the public key and send 

• Typically parameters for further encryption 

3. Only the server can decrypt it! 



Encrypted network traffic 
• Transport Layer Security (TLS) 

– Encryption of HTTP traffic 
– Used to be called SSL 
– Pretty universally supported 

• Starting a private (encrypted) conversation 
1. Get the public key of the server 
2. Encrypt a message with the public key and send 

• Typically parameters for further encryption 

3. Only the server can decrypt it! 
(See any problems?) 
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• Anyone can claim to be the server 

– Man-in-the-middle attack 
– Send you bogus public key 

• Solution? 
– Certificate authorities 

• Ask CA to verify public key actually belongs to server 
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Encrypted Network Traffic 
• Anyone can claim to be the server 

– Man-in-the-middle attack 
– Send you bogus public key 

• Solution? 
– Certificate authorities 

• Known reliable source 
• Ask CA to verify public key actually belongs to server 
(See any problems?) 
• Man-in-the-middle attack 
• Send you bogus verification 
• Solution? 

– Web browser has public key for known CAs a priori 



Back to authentication 
• Security concerns 

– Passwords stolen from database 
– Passwords intercepted in transit 
– Passwords sent to a rogue server 

• Certificate Authorities 

– Password strength 
– Social engineering 

• Session IDs 
– Login credentials not resent with every request 
– Encryption to prevent session hijacking 
– Rotating session IDs 
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