
Associative arrays

• Associative arrays map a key to a value

– Keys and values can be different data types
“name” => “Emmett”

“arms” => 2

42 => “The answer”

• Associative arrays can be implemented in many ways

– Parallel array

– Array of key-value structs

– Hash table

– Vector

Ordered maps

• PHP implements associative arrays as ordered maps

– The key-value pairs are stored in a particular sequence

• Standard array-subscript notation is typically used

– With keys instead of integer indeces

– Supports both assignment and retrieval
$a [“key_one”] = 72;

print $a[“key_one”];

– Setting the value for a non-existent key creates the key-
value pair
$a[“newkey”] = 7;

– Retrieving the value for a non-existent key returns NULL
($a[“newkey”] == NULL) # is TRUE

Iterating over associative arrays

• Unless the keys are contiguous integers (0,1,2,3…), a
standard for-loop doesn’t make sense

– It will just return NULL for all the non-existent keys

for($i=0; $i<count($a); $i++)

{

print “<h1>$a[$i]</h1>\n”;

}

Iterating over associative arrays

• Instead, like many scripting languages, PHP has a
convenient foreach loop

– Iterates over the array values in order

– Loop syntax specifies:
• The array to iterate over ($myarr)

• A variable name to bind each successive value to ($a)

foreach($myarr as $a)

{

print “<h1>$a</h1>\n”;

}

Iterating over associative arrays

• Foreach can also iterate over the keys and values

– Syntax specifies variables to bind each key and value

foreach($myarr as $k => $v)

{

print “Key: $k, Value: $v\n”;

}

Simulating indexed arrays

• Associative arrays can always be used like indexed
arrays

– Simply use contiguous integers as keys

• PHP provides shortcut appending with an empty
subscript

$arr = array(“a”, “b”, “c”); # keys 0, 1, 2

$arr[] = “d”; # “d” has key 3

Keys and values

• Retrieve the keys from an array
array_keys($a);

– The keys are returned as an array with indeces 0,1,2…

• Retrieve the values from an array
array_values($a);

– The values are returned as an array with indeces 0,1,2…

Removing array items

• Setting a key to the value NULL…
$a[“name”] = NULL;

– Is kind of like removing it:
print $a[“name”]; # prints NULL

– But not really:
array_keys($a); # still one of the keys

count($a); # still counted

• The unset() function deletes variables
unset($myVar);

– Including key-value pairs in an array
unset($a[“name”]);

