
Variable scope

• All <?php ?> blocks in the file share the same scope

– This example prints the number 5 as expected

<?php $x = 5; ?>

<h3>And then some HTML</h3>

<?= $x ?>

Defining functions

• PHP functions follow c-style syntax

– But with no explicit types
function pythagorean($s1, $s2) {

return sqrt($s1*$s1 + $s2*$s2);

}

– No explicit parameter or return types

– No return statement implies a return of NULL

Calling functions

• PHP function calls follow c-style syntax
$s3 = pythagorean($s1, $s2);

– Number of parameters must match

– Types are not enforced (obviously)

• Functions have global scope

– Can be called from anywhere

– Should be defined at the top-level of the file

– Do not have to be defined before they are called

Default parameter values

• Function parameters may be given default values

function makecoffee($type = "cappuccino")

{

 return "Making a cup of $type.\n";

}

echo makecoffee(); # Making a cup of cappuchino.

echo makecoffee(null); # Making a cup of .

echo makecoffee("espresso"); # Making a cup of espresso.

– Only rightmost parameters can be default

Pass by reference

• PHP defaults to pass-by-value

• Pass by reference is supported

function add_some_extra(&$string)

{

 $string .= 'and something extra.';

}

$str = 'This is a string, ';

add_some_extra($str);

echo $str; # This is a string, and something extra.

– But really only makes sense when using classes

Global variables
• Variables are assumed to exist in the scope they are

used

– There’s no declaration to say otherwise
function example()

{

 print $a; # will always print NULL

}

• To access a global variable, it must be declared as
such
$a = 15;

function example()

{

 global $a;

 print $a; # will print 15

}

Includes

• The include and require functions insert the contents
of the specified file at that point

– Which are then interpreted right there
include(“login.php”);

require(“header.php”);

• Using include/require encourages modularity

– Put common functions in included files

– Put header/footer/sidebar code in included files

• Commonly, use include_once/require_once to avoid
the same file being included twice

– Like the include guard problem in C++

Client-side redirects

• Asks the client to request a replacement page

• Send an HTTP header via PHP

– PHP: header("Location: http://google.com");

• Or directly in HTML

– <meta http-equiv="refresh“
content="0;url=http://google.com/">

