
Scene Projection
• Objects in 3d (world) space are projected onto the

camera’s near clipping plane
– Resulting in a 2d image

– For each point on the object
• Transform into camera space
• Multiply by camera projection matrix

– Doesn’t scale well with continuous points
• Mesh vertices work much better

Image from freedictionary.com

Lighting Calculation
• Phong shading and Phong reflection

– 1973 Ph.D. Thesis, standard simple lighting model
– Roughly, ambient light is the same everywhere
– Diffuse light spreads out in all directions after reflection
– Specular light reflects towards the viewer (creates

highlights)

Images from wikipedia.com

Lighting Calculation
• Calculate intensity at a surface point:

• L: vector to a light source
• N: surface normal
• V: vector to the viewer
• R: direction of the light reflection

– Ambient light is just a constant
– Diffuse light is proportional to L dot N (how it hits the

surface)
– Specular light is proportional to R dot V (how directly it

goes towards the viewer)

Images from wikipedia.com

• We only care about the discrete pixels on the screen
• Given only the vertices of a polygon

– For each horizontal scan line
• Interpolate vertex normals along polygon edges (Na, Nb)
• Interpolate across scan line (Ns)

Rasterization

Images from wikipedia.com

What Color?
• Phong shading calculates light intensity, which is

multiplied by the color of the light and the color of
the surface

• Vertex coloring
– Specify the color at each vertex and interpolate
– Hard to be very precise

• Texture mapping
– “Wrap” an image onto the object like a sticker, specifying

the color at each point

Texture Mapping
• For each vertex in the object

– Specify a 2d coordinate in the texture image
– Called U,V coordinates
– Similar to flattening a globe out into a wall map

• UV unwrapping supported by 3d modeling software

Image from pixologic

Bump Mapping
• Same idea as texture mapping
• But use the image pixel values as normal vectors to

create the illusion of surface variation

Image from wikipedia.com

Rendering Pipeline

Images from: https://www.ntu.edu.sg/index/ehchua/programming/opengl/CG_BasicsTheory.html

• Original hardware acceleration was rasterizing

3D Transforms
• Matrix multiplication!

• Matrices can represent transform, rotation and scale

Images from: http://www.codinglabs.net/article_world_view_projection_matrix.aspx

Model Space vs. World Space
• The vertices of the kettle are specified in model

space
– Distance from the origin of the kettle

• The kettle rotation is also in model space
– Spins on its own axis no matter where it is in the world
– (The top example is right)

Images from: http://www.codinglabs.net/article_world_view_projection_matrix.aspx

• Matrix multiplication is
not commutative
– T*R*V not R*T*V

• But it is associative
– Precalc T*R for all V

3D Transforms
• Matrix multiplication is associative

– You can pre-multiply any number of transforms

– Then apply the resulting matrix to all the points in an
object

Images from: http://www.codinglabs.net/article_world_view_projection_matrix.aspx

World Space vs. View Space
• Objects in world space must be transformed relative

to the camera
– Camera position, orientation is just another matrix
– Can be pre-multiplied with the model-world transform and

applied to all points

Images from: http://www.codinglabs.net/article_world_view_projection_matrix.aspx

Projection
• From view space, points are projected onto the view

plane in front of the camera (near Z)
– Conveniently, projection can be done as another matrix!

Images from: http://www.codinglabs.net/article_world_view_projection_matrix.aspx

Graphics Algorithms
• Finding more efficient, scalable ways to do realistic

rendering
– In real-time, for games

• Fun problem-solving domain

Culling
• Only draw polygons that the

player can see
– Too far away (trivial distance culling)
– Outside view frustrum
– Blocked by another object

• Naïve approach: project all
vertices, only display the ones
that fall within the view plane
– Inefficient, scales poorly

Image from https://techpubs.jurassic.nl/manuals/0640/developer/Optimizer_PG/sgi_html/ch05.html

Culling
• Spatial partitioning

– Octrees
• Recursively divide space into eight cubes
• If a node is outside the frustrum, so are all its children
• Useful in visibility, line-of-sight, collision, awareness, etc…

Image from Wikipedia: http://en.wikipedia.org/wiki/Octree

Occlusion
• Z-buffer

– Draw everything
– Also write the distance from camera (depth) for each pixel

• Need a screen-sized buffer to hold the distance values

– Only draw if the new pixel is closer than the old

• Inefficient in space and time

Occlusion
• Painter’s algorithm:

– Draw back-to-front from viewpoint,
“painting over”

– Need to sort polygons back-to-front

• Binary Space Partitioning (BSP
trees)
– Provides fast, reliable back-to-front

ordering from any position in the scene
(linear time)

– Product of much research starting in
1969

– Popularized by John Carmack in DOOM
and Quake Summary of Michael Abrash’ article at: http://www.bluesnews.com/abrash/chap64.shtml

Binary Space Partitioning
• Recursively subdivide space into two subspaces,

storing them in a binary tree
– If any node is not visible, neither are its children

Public Domain, https://commons.wikimedia.org/w/index.php?curid=641368

Binary Space Partitioning
• More specifically, divide each subspace by a

hyperplane
– Plane corresponds to walls in the game
– Plane divides all polygons in the scene

• e.g. D -> D1 and D2
• Left child is all polygons behind the plane
• Right child is all polygons in front of the plane

– Critical property:
• From either side of a plane (e.g. A), the polygons on the other side

can never occlude the polygons on this side
• Can safely draw them first

…

By Chrisjohnson at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20655445

Binary Space Partitioning
• Traversal algorithm

– Render child node on the other side
– Render this node
– Render child node on this side

• Example result from position V:
– D1, B1, C1, A, D2, B2, C2, D3

By Chrisjohnson at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20655445

…

Eliminating Overdraw
• Still a lot of polygons in the view

frustum
– Tons of overdraw

• Draw front-to-back instead, keep
track of filled pixels
– Combine BSP sorting with z-buffer
– Only store “filled or not” (1 bit)

instead of depth
– Trade-off depends on the cost of

rasterization, shading

Summary of Michael Abrash’ article at: http://www.bluesnews.com/abrash/chap64.shtml

– Potentially Visible Set (PVS): Pre-calculate from every node
which other nodes can be seen and store as lists. Size
concern (several MB) compressed as a bit array with RLE
(zero-byte) down to 20kb.

• With PVS, most nodes are culled up-front in traversal, making the
best, average and worst cases much more alike

• Costly pre-processing, only good for static geometry
• Combined with z-filling to enable efficient culling of dynamic

objects

Eliminating Overdraw

Shadows
• Intuitively, enhance the lighting calculation

– Already calculating intensity contribution from each light
– Check if that light is blocked by an object by raytracing
– Can be baked into texture maps for static lights, objects
– Too expensive for real-time

Shadows
• Shadow map

– Pre-render the scene from the light PoV into a depth
buffer (stores closest distance for each pixel)

– For each dynamic vertex, project to the light PoV and
compare against stored depth

– If equal, that vertex is lit, otherwise in shadow
– Limited by resolution of shadow map

Shadows
• Shadow volumes

– Get the silhouette of each object in the scene
• Edges connecting back-facing to front-facing faces

– Project the silhouette away from the light to create a
volume that is in shadow

– For each vertex, see if it is in a shadow volume or not

Shadows
• Shadow volumes

– Real-time acceleration:
• A point is in shadow if a ray from the camera to that point crosses

an even number of (convex) shadow volume faces
• Render entire scene with no lights to get ambient color and depth

– Depth values are stored in the stencil buffer
• Render all front-facing shadow volume faces into stencil buffer

– +1 where a shadow face is in front of the visible pixel depth
• Render all back-facing shadow volume faces into stencil buffer

– -1 where a shadow face is in front of the visible pixel depth
• Re-render scene with lighting only where stencil buffer = 0

– AKA the pixels that are not in shadow
• Stencil buffer is hardware accelerated for fast update/compare

Current Techniques
• Raytracing available staring with nVidia RTX cards

– Still want to support lower cost devices, mobile

• https://gfxcourses.stanford.edu/cs248/winter22cont
ent/media/realtimetechniques/11_modernrast.pdf
– Soft Shadows

• Ray tracing vs. PCF

– Ambient occlusion
– Reflections
– Interreflections, subsurface scattering

https://gfxcourses.stanford.edu/cs248/winter22content/media/realtimetechniques/11_modernrast.pdf
https://gfxcourses.stanford.edu/cs248/winter22content/media/realtimetechniques/11_modernrast.pdf

Further Reading
• Physically Based Rendering

– https://pbrt.org/
– Third edition free online as of 2018
– Fourth edition released March 2023

• Shaders!
– Programmable GPU computing units

• Vertex shaders run on each vertex
• Fragment shaders run on each rasterized fragment

Images from: https://www.ntu.edu.sg/index/ehchua/programming/opengl/CG_BasicsTheory.html

https://pbrt.org/

	Scene Projection
	Lighting Calculation
	Lighting Calculation
	Rasterization
	What Color?
	Texture Mapping
	Bump Mapping
	Rendering Pipeline
	3D Transforms
	Model Space vs. World Space
	3D Transforms
	World Space vs. View Space
	Projection
	Graphics Algorithms
	Culling
	Culling
	Occlusion
	Occlusion
	Binary Space Partitioning
	Binary Space Partitioning
	Binary Space Partitioning
	Eliminating Overdraw
	Eliminating Overdraw
	Shadows
	Shadows
	Shadows
	Shadows
	Current Techniques
	Further Reading

