
Scene Projection
• Objects in 3d (world) space are projected onto the 

camera’s near clipping plane
– Resulting in a 2d image

– For each point on the object
• Transform into camera space
• Multiply by camera projection matrix

– Doesn’t scale well with continuous points
• Mesh vertices work much better

Image from freedictionary.com



Lighting Calculation
• Phong shading and Phong reflection

– 1973 Ph.D. Thesis, standard simple lighting model
– Roughly, ambient light is the same everywhere
– Diffuse light spreads out in all directions after reflection
– Specular light reflects towards the viewer (creates 

highlights)

Images from wikipedia.com



Lighting Calculation
• Calculate intensity at a surface point:

• L: vector to a light source
• N: surface normal
• V: vector to the viewer
• R: direction of the light reflection

– Ambient light is just a constant
– Diffuse light is proportional to L dot N (how it hits the 

surface)
– Specular light is proportional to R dot V (how directly it 

goes towards the viewer)

Images from wikipedia.com



• We only care about the discrete pixels on the screen
• Given only the vertices of a polygon

– For each horizontal scan line
• Interpolate vertex normals along polygon edges (Na, Nb)
• Interpolate across scan line (Ns)

Rasterization

Images from wikipedia.com



What Color?
• Phong shading calculates light intensity, which is 

multiplied by the color of the light and the color of 
the surface

• Vertex coloring
– Specify the color at each vertex and interpolate
– Hard to be very precise

• Texture mapping
– “Wrap” an image onto the object like a sticker, specifying 

the color at each point



Texture Mapping
• For each vertex in the object

– Specify a 2d coordinate in the texture image
– Called U,V coordinates
– Similar to flattening a globe out into a wall map

• UV unwrapping supported by 3d modeling software

Image from pixologic



Bump Mapping
• Same idea as texture mapping
• But use the image pixel values as normal vectors to 

create the illusion of surface variation

Image from wikipedia.com



Rendering Pipeline

Images from: https://www.ntu.edu.sg/index/ehchua/programming/opengl/CG_BasicsTheory.html

• Original hardware acceleration was rasterizing



3D Transforms
• Matrix multiplication!

• Matrices can represent transform, rotation and scale

Images from: http://www.codinglabs.net/article_world_view_projection_matrix.aspx



Model Space vs. World Space
• The vertices of the kettle are specified in model 

space
– Distance from the origin of the kettle

• The kettle rotation is also in model space
– Spins on its own axis no matter where it is in the world
– (The top example is right)

Images from: http://www.codinglabs.net/article_world_view_projection_matrix.aspx

• Matrix multiplication is 
not commutative
– T*R*V not R*T*V

• But it is associative
– Precalc T*R for all V



3D Transforms
• Matrix multiplication is associative

– You can pre-multiply any number of transforms

– Then apply the resulting matrix to all the points in an 
object

Images from: http://www.codinglabs.net/article_world_view_projection_matrix.aspx



World Space vs. View Space
• Objects in world space must be transformed relative 

to the camera
– Camera position, orientation is just another matrix
– Can be pre-multiplied with the model-world transform and 

applied to all points

Images from: http://www.codinglabs.net/article_world_view_projection_matrix.aspx



Projection
• From view space, points are projected onto the view 

plane in front of the camera (near Z)
– Conveniently, projection can be done as another matrix!

Images from: http://www.codinglabs.net/article_world_view_projection_matrix.aspx



Graphics Algorithms
• Finding more efficient, scalable ways to do realistic 

rendering
– In real-time, for games

• Fun problem-solving domain



Culling
• Only draw polygons that the 

player can see
– Too far away (trivial distance culling)
– Outside view frustrum
– Blocked by another object

• Naïve approach: project all 
vertices, only display the ones 
that fall within the view plane
– Inefficient, scales poorly

Image from https://techpubs.jurassic.nl/manuals/0640/developer/Optimizer_PG/sgi_html/ch05.html



Culling
• Spatial partitioning

– Octrees
• Recursively divide space into eight cubes
• If a node is outside the frustrum, so are all its children
• Useful in visibility, line-of-sight, collision, awareness, etc…

Image from Wikipedia: http://en.wikipedia.org/wiki/Octree



Occlusion
• Z-buffer

– Draw everything
– Also write the distance from camera (depth) for each pixel

• Need a screen-sized buffer to hold the distance values

– Only draw if the new pixel is closer than the old

• Inefficient in space and time



Occlusion
• Painter’s algorithm:

– Draw back-to-front from viewpoint, 
“painting over”

– Need to sort polygons back-to-front

• Binary Space Partitioning (BSP 
trees)
– Provides fast, reliable back-to-front 

ordering from any position in the scene 
(linear time)

– Product of much research starting in 
1969

– Popularized by John Carmack in DOOM 
and Quake Summary of Michael Abrash’ article at: http://www.bluesnews.com/abrash/chap64.shtml



Binary Space Partitioning
• Recursively subdivide space into two subspaces, 

storing them in a binary tree
–   If any node is not visible, neither are its children

Public Domain, https://commons.wikimedia.org/w/index.php?curid=641368



Binary Space Partitioning
• More specifically, divide each subspace by a 

hyperplane
– Plane corresponds to walls in the game
– Plane divides all polygons in the scene

• e.g. D -> D1 and D2
• Left child is all polygons behind the plane
• Right child is all polygons in front of the plane

– Critical property:
• From either side of a plane (e.g. A), the polygons on the other side 

can never occlude the polygons on this side
• Can safely draw them first

…

By Chrisjohnson at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20655445



Binary Space Partitioning
• Traversal algorithm

– Render child node on the other side
– Render this node
– Render child node on this side

• Example result from position V:
– D1, B1, C1, A, D2, B2, C2, D3

By Chrisjohnson at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20655445

…



Eliminating Overdraw
• Still a lot of polygons in the view 

frustum
– Tons of overdraw

• Draw front-to-back instead, keep 
track of filled pixels
– Combine BSP sorting with z-buffer
– Only store “filled or not” (1 bit) 

instead of depth
– Trade-off depends on the cost of 

rasterization, shading

Summary of Michael Abrash’ article at: http://www.bluesnews.com/abrash/chap64.shtml



– Potentially Visible Set (PVS): Pre-calculate from every node 
which other nodes can be seen and store as lists. Size 
concern (several MB) compressed as a bit array with RLE 
(zero-byte) down to 20kb.

• With PVS, most nodes are culled up-front in traversal, making the 
best, average and worst cases much more alike

• Costly pre-processing, only good for static geometry
• Combined with z-filling to enable efficient culling of dynamic 

objects

Eliminating Overdraw



Shadows
• Intuitively, enhance the lighting calculation

– Already calculating intensity contribution from each light
– Check if that light is blocked by an object by raytracing
– Can be baked into texture maps for static lights, objects
– Too expensive for real-time



Shadows
• Shadow map

– Pre-render the scene from the light PoV into a depth 
buffer (stores closest distance for each pixel)

– For each dynamic vertex, project to the light PoV and 
compare against stored depth

– If equal, that vertex is lit, otherwise in shadow
– Limited by resolution of shadow map



Shadows
• Shadow volumes

– Get the silhouette of each object in the scene
• Edges connecting back-facing to front-facing faces

– Project the silhouette away from the light to create a 
volume that is in shadow

– For each vertex, see if it is in a shadow volume or not



Shadows
• Shadow volumes

– Real-time acceleration:
• A point is in shadow if a ray from the camera to that point crosses 

an even number of (convex) shadow volume faces
• Render entire scene with no lights to get ambient color and depth

– Depth values are stored in the stencil buffer
• Render all front-facing shadow volume faces into stencil buffer

– +1 where a shadow face is in front of the visible pixel depth
• Render all back-facing shadow volume faces into stencil buffer

– -1 where a shadow face is in front of the visible pixel depth
• Re-render scene with lighting only where stencil buffer = 0

– AKA the pixels that are not in shadow
• Stencil buffer is hardware accelerated for fast update/compare



Current Techniques
• Raytracing available staring with nVidia RTX cards

– Still want to support lower cost devices, mobile

• https://gfxcourses.stanford.edu/cs248/winter22cont
ent/media/realtimetechniques/11_modernrast.pdf
– Soft Shadows

• Ray tracing vs. PCF

– Ambient occlusion
– Reflections
– Interreflections, subsurface scattering

https://gfxcourses.stanford.edu/cs248/winter22content/media/realtimetechniques/11_modernrast.pdf
https://gfxcourses.stanford.edu/cs248/winter22content/media/realtimetechniques/11_modernrast.pdf


Further Reading
• Physically Based Rendering

– https://pbrt.org/
– Third edition free online as of 2018
– Fourth edition released March 2023

• Shaders!
– Programmable GPU computing units

• Vertex shaders run on each vertex
• Fragment shaders run on each rasterized fragment

Images from: https://www.ntu.edu.sg/index/ehchua/programming/opengl/CG_BasicsTheory.html

https://pbrt.org/
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