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This paper deals with free transverse vibrations of nonuniform homogeneous beams. Can-
tilevers of rectangular (or elliptical) cross-section with parabolic thickness variation, and
cantilevers of circular cross-section with parabolic radius variation, are considered. Factor-
ing their fourth order differential equations of transverse vibrations into a pair of second
order differential equations leads to general solutions in terms of hypergeometric func-
tions. Exact natural frequencies and exact mode shapes are reported for sharp parabolic
cantilevers of various dimensionless lengths.
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1. Introduction

Numerous papers have been published on transverse vibrations of nonuniform beams due to their relevance to aeronau-
tical, mechanical, and civil engineering. Yet, analytical solutions are available only for a few particular types of cross-section
variations. These solutions are important since ‘‘it is difficult to draw general conclusions about the behavior of a system
using only numerical methods” (Rao, 2004). Such analytical solutions in terms of (a) orthogonal polynomials Caruntu
(2007, 2005, 1996), (b) Bessel functions (Auciello and Nole, 1998; De Rosa and Auciello, 1996; Craver and Jampala, 1993;
Goel, 1976; Sanger, 1968; Mabie and Rogers, 1968; Conway and Dubil, 1965; Conway et al., 1964; Cranch and Adler,
1956), (c) hypergeometric series (Storti and Aboelnaga, 1987; Wang, 1967), and (d) power series by Frobenius method
(Chaudhari and Maiti, 1999; Naguleswaran, 1995, 1994a,b; Wright et al., 1982), have been reported in the literature. Abrate
(1995) presented a method in which the equation of motion of a class of nonuniform beams is transformed into one of uni-
form beams. Most of the investigated nonuniform beams of circular and/or rectangular cross-section were linearly tapered,
but other cross-section variations were also considered. Circular cross-section has been considered for (a) truncated beams
(De Rosa and Auciello, 1996; Naguleswaran, 1994a; Sanger, 1968; Mabie and Rogers, 1968; Conway et al., 1964), (b) beams
of one end sharp (Caruntu, 2007; Naguleswaran, 1994b; Cranch and Adler, 1956), and (c) both ends sharp (Caruntu, 2007;
Cranch and Adler, 1956). Rectangular cross-section has been considered for (a) beams of constant width (Naguleswaran,
1994b; Goel, 1976; Sanger, 1968; Mabie and Rogers, 1968; Conway and Dubil, 1965), (b) beams of constant thickness
(Chaudhari and Maiti, 1999; Wright et al., 1982; Cranch and Adler, 1956), and (c) pyramids (Auciello and Nole, 1998; De Rosa
and Auciello, 1996; Craver and Jampala, 1993; Goel, 1976; Sanger, 1968; Mabie and Rogers, 1968; Conway et al., 1964;
Cranch and Adler, 1956). Of rectangular cross-section papers, (a) few were dedicated to beams of one end sharp (Caruntu,
2007; Naguleswaran, 1995, 1994a,b; Wright et al., 1982; Cranch and Adler, 1956), and (b) only two to the case of both ends
sharp Caruntu (2007), Cranch and Adler (1956); (c) all others being dedicated to truncated beams. Width varying with any
. All rights reserved.
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positive power of the longitudinal coordinate has been considered along with (a) constant thickness (Naguleswaran, 1995),
(b) linear thickness (Sanger, 1968; Cranch and Adler, 1956), and (c) any positive power variation of thickness (Wang, 1967).
Beams of parabolic thickness variation with particular boundary conditions and solutions in terms of orthogonal polynomi-
als have been reported as well (Caruntu, 2007, 1996). Beams of exponential thickness and constant width were presented by
Ece et al. (2007), and constant thickness and exponential width by Cranch and Adler (1956). An asymptotic approach for
transverse vibrations of variable section beams has been reported by Firouz-Abadi et al. (2007). A recent mathematical inves-
tigation, Anderson and Hoffacker (2006), was dedicated to the existence of solutions of cantilever beam problem. As one can
see there is a continuous effort in studying one dimensional continuous systems.

Cantilevers of parabolic thickness variation are important for studies regarding geometry influence on different phenom-
ena. Cantilevers in general are key structures in many engineering applications. In particular they are extensively used as
resonator sensors. Cantilever structures are integral parts of microelectromechanical (MEMS) biosensors for the detection
of airborne virus particles (Johnson et al., 2006), and resonant nanoelectromechanical systems (NEMS) for a new class of ul-
tra fast, highly sensitive devices (Cimalla et al., 2007). Results regarding nonuniform cantilevers of particular geometry used
as resonator sensors have been already reported in the literature. For instance Turner and Wiehn (2001) considered the
dynamics of atomic force microscope (AFM) cantilevers in terms of flexural vibrations. They investigated the sensitivity of
a nonuniform cantilever beam (triangular with constant width) against a uniform cantilever, and found that for values of
a studied parameter (the normal contact stiffness relative to the stiffness of the cantilever) greater than 100, the overall sen-
sitivity of the triangular cantilever is greater than or equal to that of the uniform beam. The fact that nonuniform cantilevers
can be, under specific circumstances, more sensitive than uniform cantilevers is an important result.

To the author’s best knowledge, there are virtually no dynamic modal characteristics available in the literature for trans-
verse vibrations of cantilevers of parabolic thickness. This paper aims to fill this gap by presenting the general solution of the
differential equation of transverse vibrations of parabolic cantilevers, and the exact natural frequencies and exact mode
shapes for the boundary value problems of sharp parabolic cantilevers. This paper presents a different approach and conse-
quently different results than those reported by Caruntu (2007) who reported the class of beams and plates whose boundary
value problems can be reduced to an eigenvalue singular problem of orthogonal polynomials. In the work of Caruntu (2007)
the natural frequencies and the mode shapes (which were Jacobi polynomials) resulted directly, without any frequency
equation to be solved, from the eigenfunctions and eigenvalues of orthogonal polynomials reported by Caruntu (2005). In
this work, the fourth order differential equation of motion is factored into a pair of second order differential equations. Gen-
eral solution in terms of hypergeometric functions, and frequency equation resulting from cantilever boundary conditions,
are reported. The exact natural frequencies and exact mode shapes are found for sharp parabolic cantilevers by solving the
frequency equation.

This paper falls in the category of analytical methods and modeling for linear vibration, benchmark solutions. Results re-
ported in this paper, along with already reported data for cantilevers linearly tapered (Cranch and Adler, 1956) and uniform
cantilevers (Timoshenko et al., 1974) provide the necessary information for studies on geometry influences on free, forced,
linear and/or nonlinear vibrations of such cantilevers. In particular the results of this paper are useful for studies on mass
deposition sensitivity of resonator sensors.

2. Transverse vibration of nonuniform Euler–Bernoulli beams

Euler–Bernoulli differential equation of transverse vibrations of nonuniform beams is given by
d2

dx2 EI�ðxÞd
2yðxÞ
dx2

" #
� q0x

2A�ðxÞyðxÞ ¼ 0; x1 < x < ‘; ð1Þ
where y(x) is the transverse displacement, A*(x) and I*(x) are the area and moment of inertia of current cross-section, respec-
tively; E, q0 and x are Young modulus, mass density, and natural frequency, respectively; x is the current longitudinal coor-
dinate of the beam, and x1 and ‘ are the coordinates of the fixed end and the free end of the beam, respectively, Fig. 1, where
jx1j < ‘. Using the variable changing
x ¼ n‘;
d
dx
¼ 1
‘
� d
dn
; ð2Þ
where n is the current dimensionless longitudinal coordinate of the beam, the dimensionless equation of transverse vibra-
tions of nonuniform Euler–Bernoulli beams is obtained as follows:
1
AðnÞ

d2

dn2 IðnÞd
2yðnÞ
dn2

" #
� �x2yðnÞ ¼ 0; n1 < n < 1; ð3Þ
where A(n) and I(n) are the dimensionless cross-section area and moment of inertia, n1 is the dimensionless coordinate of the
fixed end, and �x is the dimensionless natural frequency given by
�x ¼ x‘2

ffiffiffiffiffiffiffiffiffiffiffi
q0A0

EI0

s
: ð4Þ
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Fig. 1. Cantilever of rectangular cross-section, parabolic thickness h* = h0(1 � n2), constant width w* = w0, and sharp end.
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The reference cross-section area and moment of inertia, A0 and I0, are considered at the longitudinal coordinate n = 0 (or
x = 0), Fig. 1.

3. Beam of rectangular cross-section and parabolic thickness

3.1. Differential equation

Consider a beam of rectangular cross-section, constant width w*(x), and parabolic thickness h*(x), Fig. 1, as follows:
w�ðxÞ ¼ w0 ¼ constant; h�ðxÞ ¼ h0 1� x2

‘2

� �
; x1 < x < ‘; ð5Þ
One can notice that the origin of the x axis is the midpoint of the complete beam (sharp at both ends, �‘ < x < ‘), and ‘ is
half of the complete beam length. The complete beam is not investigated in this paper. It has been investigated by Caruntu
(2007). The complete beam was mentioned just to indicate the location of the origin of the x axis. Using the variable changing
given by Eq. (2), the current width w*, thickness h*, cross-section area A*, and moment of inertia I* can be written as
w� ¼ w0 �wðnÞ; h� ¼ h0 � hðnÞ; A� ¼ A0 � AðnÞ; I� ¼ I0 � IðnÞ; ð6Þ
where w0, h0, A0 and I0 are the reference width, thickness, cross-section area, and moment of inertia
A0 ¼ w0h0; I0 ¼
w0h3

0

12
; ð7Þ
considered at x = 0 regardless where the fixed end of the cantilever given by x1 occurs; and w, h, A, and I are the dimension-
less width, thickness, cross-section area, and moment of inertia, respectively
wðnÞ ¼ 1; hðnÞ ¼ 1� n2; AðnÞ ¼ 1� n2; IðnÞ ¼ ð1� n2Þ3: ð8Þ
Differential equation (3) of transverse vibrations becomes in this case
1
ð1� n2Þ

d2

dn
ð1� n2Þ3 d2Y

dn2

" #
� �x2Y ¼ 0; n 2 ½n1;1Þ ð9Þ
or
ð1� n2Þ2 d4Y

dn4 � 12nð1� n2Þd
3Y

dn3 � 6ð1� 5n2Þd
2Y

dn2 � �x2Y ¼ 0; n 2 ½n1;1Þ; ð10Þ
where the dimensionless coordinate n1 of the fixed end, Fig. 1, can be anywhere between �1 and 1.
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3.2. General solution

Eq. (10) can be factored as follows:
ð1� n2Þ d2

dn2 � 4n
d
dn
þ k1

" #
� ð1� n2Þ d2

dn2 � 4n
d

dn
þ k2

" #
� Y ¼ 0; ð11Þ
where
kj ¼ 2þ ð�1Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ �x2

p
; j ¼ 1;2: ð12Þ
Due to the factorization, solving the fourth order differential equation (10) reduces to solving the two second order differ-
ential equations which are given by Eq. (11). Using the variable changing
n ¼ 1� 2z; ð13Þ
the two second order differential equations given by Eq. (11) become
zð1� zÞd
2Y

dz2 þ ½2� 4z�dY
dz
þ kjY ¼ 0; j ¼ 1;2: ð14Þ
Differential equations (14) are Gauss equations. As the canonical form of Gauss equation is
zð1� zÞd
2y

dz2 þ ½c � ðaþ bþ 1Þz�dy
dz
� abz ¼ 0; ð15Þ
the Gauss coefficients, aj, bj, cj of the two differential equations (14) are given by
cj ¼ 2
aj þ bj ¼ 3

ajbj ¼ �2þ ð�1Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ �x2
p

8><
>: ; j ¼ 1;2: ð16Þ
According to Abramovitz and Stegun (1965) the general solutions of the differential equations (14) are
YjðzÞ ¼ Aj�2F1ðaj; bj; cj; zÞ þ Bj �wj2ðzÞ; j ¼ 1;2; ð17Þ
where Aj, Bj, j = 1,2, are constants of integration, 2F1 (a,b,c,z) is the hypergeometric function
2F1ða; b; c; zÞ ¼
X1
n¼0

ðaÞnðbÞn
ðcÞn

zn

n!
; ð18Þ
wj2(z) function is given by
wj2ðzÞ ¼ 2F1ðaj; bi; cj; zÞ ln zþ
X1
n¼1

ðajÞnðbjÞn
n!ðcjÞn

zn½wðaj þ nÞ � wðajÞ þ wðbj þ nÞ � wðbjÞ � wðnþ cjÞ

þ wðcjÞ � wðnþ 1Þ þ wð1Þ� �
Xcj�1

n¼1

ðn� 1Þ!ð1� cjÞn
ð1� ajÞnð1� bjÞn

z�n; ð19Þ
wis the logarithmic derivative of Gamma function C, and (a)n is the Pochhammer symbol or rising factorial
ðaÞn ¼
Cðaþ nÞ

CðaÞ ¼ aðaþ 1Þ . . . ðaþ n� 1Þ: ð20Þ
Since the second order differential operators of Eq. (11) are commuting operators, the general solution Y(n) of Eq. (10) is a
linear combination of the solutions Y1(n) and Y2(n), given by Eq. (17), as follows:
YðnÞ ¼
X2

j¼1

Aj�2F1 aj; bj; cj;
1� n

2

� �
þ Bj �wj2

1� n
2

� �� �
: ð21Þ
The general solution given Eq. (21) holds for any beam of rectangular cross-section, constant width, and parabolic thick-
ness variation, sharp or not, and any boundary conditions. Yet, only the case of sharp parabolic cantilevers is considered in
what follows. Numerical determinations of the natural frequencies and mode shapes are presented in this case.

3.3. Boundary conditions and frequency equation of sharp parabolic cantilevers

Consider a parabolic cantilever with one end sharp. In this case both coefficients B1 and B2 of the general solution given by
Eq. (21) must be zero, therefore the general solution in this case becomes
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YðnÞ ¼ A1�2F1 a1; b1; c1;
1� n

2

� �
þ A2�2F1 a2; b2; c2;

1� n
2

� �
: ð22Þ
Both coefficients B1 and B2 must be zero because the functions wj2[(1 � n)/2], j = 1,2, given by Eq. (19), become infinite at the
sharp end, n = 1, due to the logarithmic function, and consequently the functions wj2, j = 1,2, cannot be used since the trans-
verse displacement of the cantilever must always remain finite. On the boundary n = n1, the fixed end of the cantilever, the
following conditions have to be met:
Yðn1Þ ¼
dY
dn
ðn1Þ ¼ 0: ð23Þ
Therefore the boundary value problem in the case of sharp cantilevers is given by Eqs. (22) and (23), and it leads to the fol-
lowing natural frequency equation:
Fð �x2Þ ¼ 2F1ða1; b1; c1;
1�n1

2 Þ 2F1 a2; b2; c2;
1�n1

2

� �
a1b1 � 2F1 a1 þ 1; b1 þ 1; c1 þ 1; 1�n1

2

� �
a2b2 � 2F1 a2 þ 1; b2 þ 1; c2 þ 1; 1�n1

2

� �
					

					 ¼ 0; ð24Þ
where coefficients aj, bj, cj, j = 1,2 are given by Eq. (16). Solving Eq. (24), the dimensionless natural frequencies �xk are ob-
tained. Denoting ajk ¼ ajð �xkÞ; bjk ¼ bjð �xkÞ; j ¼ 1;2, the corresponding mode shapes Yk(n) result as
YkðnÞ ¼ 2F1 a1k; b1k; c1;
1� n

2

� �
þ Dk � 2F1 a2k; b2k; c2;

1� n
2

� �
; ð25Þ
where the coefficients Dk are given by
Dk ¼ �
2F1 a1k; b1k; c1;

1�n1
2

� �
2F1 a2k; b2k; c2;

1�n1
2

� � : ð26Þ
Few remarks regarding boundary conditions follow. First, if the free end of the cantilever was not sharp, i.e. it was a regular
point of the differential equation, then the general solution of the equation of motion would be given by Eq. (21) and the free
boundary conditions at this end would be those of zero bending moment and zero shear force. Second, at any sharp end,
physically no specific displacement or slope can be enforced, so any sharp end must be a free end. Therefore no boundary
such as pinned, fixed, or simply supported can occur at sharp ends. On the other hand, tacitly it is always required that
the displacement and its derivatives are finite at every point of the cantilever. However, at the sharp end of the cantilever,
n = 1, which is a singular point of the differential equation, the condition that the displacement is finite has to be explicitly
enforced
Yð1Þ ¼ finite: ð27Þ
Eq. (27) was the boundary condition that reduced Eq. (21) to Eq. (22). Third, the necessary condition of finite displace-
ment at the sharp end, Eq. (27), Caruntu (2007), is a sufficient condition for zero bending moment and zero shear force (free
boundary) in the case of parabolic sharp cantilever, see Appendix. This is consistent with the fact that a sharp end cannot
sustain any moment or shear force. One can say that the usual boundary conditions of a free end, M = T = 0, zero bending
moment and zero shear force, have to be replaced by Y = finite at a sharp end. Fourth, the finite displacement condition,
Eq. (27), eliminates from the general solution given by Eq. (21) the unbounded at n = 1 functions wj2, j = 1,2, and leaves
the general solution with only hypergeometric functions which are continuous and have continuous derivatives at n = 1.

3.4. Numerical determinations of exact modes

The exact natural modes, reported in what follows, are of sharp parabolic cantilevers of rectangular (or elliptical) cross-
section. Eq. (24) has been solved using MATLAB (and MATHEMATICA) to find the first four natural frequencies for different
values of the dimensionless coordinate of the fixed end, n1 = �1 + k/10, where k = 3,4, . . . ,17. One can see from Fig. 1 that the
cantilever dimensionless length is given by 1 � n1. Table 1 shows the first four natural frequencies of the beam and Fig. 2
graphs the first three natural frequencies. All the necessary coefficients for the corresponding mode shapes are given in Ta-
bles 2 and 3. The Gauss coefficients given by Eq. (16) are found in Table 2, and D coefficients given by Eq. (26) are found in
r natural frequencies �x ¼ x‘2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq0A0Þ=ðEI0Þ

p
of the cantilever given in Fig. 1 versus the dimensionless coordinate of the fixed end n1

1

0.7 �0.6 �0.5 �0.4 �0.3 �0.2 �0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1.050 1.469 1.936 2.465 3.070 3.770 4.593 5.576 6.772 8.263 10.17 12.72 16.27 21.60 30.47
7.606 8.958 10.42 12.02 13.83 15.91 18.32 21.18 24.65 28.96 34.47 41.78 51.99 67.26 92.66
8.25 20.91 23.79 26.96 30.54 34.63 39.40 45.05 51.90 60.41 71.29 85.72 105.9 136.0 186.2
2.54 36.96 41.73 46.99 52.92 59.70 67.61 76.98 88.34 102.4 120.5 144.4 177.8 227.8 310.9
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p
of the cantilever, Fig. 1, versus the coordinate n1 of the fixed end; (––––) first

frequency, (--- -) second frequency, and (. . .. . .) third frequency.

Table 2
Gauss coefficients a1k, a2k of the first four mode shapes k = 1,2,3,4 (see Eq. (25)) of the cantilever given in Fig. 1

a11 a21 a12 a22 a13 a23 a14 a24

n1 �0.7 4.051 2.911 4.981 1.5 + 1.901i 6.255 1.5 + 3.756i 7.571 1.5 + 5.325i
�0.6 4.095 2.830 5.164 1.5 + 2.220i 6.526 1.5 + 4.094i 7.924 1.5 + 5.724i
�0.5 4.152 2.711 5.354 1.5 + 2.521i 6.803 1.5 + 4.430i 8.284 1.5 + 6.126i
�0.4 4.225 2.537 5.554 1.5 + 2.818i 7.094 1.5 + 4.774i 8.661 1.5 + 6.541i
�0.3 4.313 2.266 5.769 1.5 + 3.119i 7.404 1.5 + 5.134i 9.064 1.5 + 6.979i
�0.2 4.419 1.5 + 0.1329i 6.003 1.5 + 3.432i 7.740 1.5 + 5.517i 9.499 1.5 + 7.449i
�0.1 4.543 1.5 + 0.8715i 6.262 1.5 + 3.765i 8.110 1.5 + 5.933i 9.979 1.5 + 7.962i

0 4.690 1.5 + 1.294i 6.552 1.5 + 4.126i 8.525 1.5 + 6.391i 10.51 1.5 + 8.530i
0.1 4.863 1.5 + 1.677i 6.884 1.5 + 4.526i 8.996 1.5 + 6.906i 11.12 1.5 + 9.172i
0.2 5.071 1.5 + 2.062i 7.269 1.5 + 4.978i 9.543 1.5 + 7.496i 11.83 1.5 + 9.910i
0.3 5.324 1.5 + 2.474i 7.727 1.5 + 5.502i 10.19 1.5 + 8.190i 12.67 1.5 + 10.78i
0.4 5.638 1.5 + 2.937i 8.288 1.5 + 6.130i 10.99 1.5 + 9.028i 13.69 1.5 + 11.84i
0.5 6.044 1.5 + 3.485i 9.002 1.5 + 6.912i 11.99 1.5 + 10.08i 14.99 1.5 + 13.17i
0.6 6.594 1.5 + 4.177i 9.958 1.5 + 7.940i 13.34 1.5 + 11.48i 16.73 1.5 + 14.95i
0.7 7.398 1.5 + 5.127i 11.35 1.5 + 9.404i 15.30 1.5 + 13.49i 19.25 1.5 + 17.51i

Table 3
Coefficients Dk of the first four mode shapes k = 1,2,3,4 (see Eq. (26)) of the cantilever given in Fig. 1

n1

�0.7 �0.6 �0.5 �0.4 �0.3 �0.2 �0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

D1 � 102 45.25 33.83 25.41 19.30 14.86 11.62 9.219 7.424 6.060 5.009 4.187 3.537 3.016 2.593 2.247
�D2 � 104 75.11 55.87 43.51 34.99 28.82 24.19 20.61 17.78 15.50 13.64 12.09 10.79 9.695 8.754 7.943

D3 � 106 152.7 125.6 106.0 91.18 79.61 70.32 62.73 56.40 51.06 46.50 42.57 39.15 36.16 33.51 31.16
�D4 � 107 43.79 37.78 33.20 29.58 26.63 24.19 22.12 20.35 18.82 17.49 16.31 15.26 14.33 13.48 12.72
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Table 3. For instance one can read for the case of n1 = 0 that the second dimensionless natural frequency is �x2 ¼ 21:18 from
Table 1, the Gauss coefficients for the corresponding mode shape given by Eq. (25) are a12 = 6.552 and a22 = 1.5 + 4.126i from
Table 2, and D2 = �17.78 � 10�4 from Table 3. The coefficients b12 = �3.552 and b22 = 1.5 � 4.126i result from Eq. (16). There-
fore, for the case of n1 = 0, the second dimensionless natural frequency and mode shapes are
�x2 ¼ 21:18; ð28Þ

Y2ðnÞ ¼ 2F1 6:552;�3:552;2;
1� n

2

� �
� 17:78 � 10�4 � 2F1 1:5þ 4:126i;1:5� 4:126i;2;

1� n
2

� �
: ð29Þ



- 0.4 - 0.2 0.2 0.4 0.6 0.8 1.0

- 0.2

0.2

0.4

0.6

0.8

1.0

- 0.4 - 0.2 0.2 0.4 0.6 0.8 1.0

- 0.2

0.2

0.4

0.6

0.8

1.0

- 0.4 - 0.2 0.2 0.4 0.6 0.8 1.0

- 0.2

0.2

0.4

0.6

0.8

1.0

a b

c

Fig. 3. First thee mode shapes of the cantilever given in Fig. 1 for three values of the dimensionless coordinate of the fixed end n1: (a) n1 = �0.4, (b) n1 = 0.0,
and (c) n1 = 0.4.
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Figure 3 shows the first three cantilever mode shapes for three different values of the dimensionless coordinates of the
fixed end. One can use Fig. 1 to see the three geometry cases of the cantilever.

3.5. Approximate natural frequencies by Galerkin method

An approximate method, namely Galerkin method, is used to find approximations of the first two natural frequencies of
transverse vibrations of a parabolic sharp cantilever whose fixed end is at n1 = 0, Fig. 1, for comparison with the exact solu-
tions reported in this paper. These approximations are shown to be close to the exact values reported in previous Section 3.4.
The boundary value problem to be solved by Galerkin method is given by Eqs. (10) and (23). Look for a trial solution for the
boundary value problem as follows
�yðnÞ ¼
X2

i¼1

biuiðnÞ; ð30Þ
where ui(n) = ni+1, and bi are adjustable constants, i = 1,2. One can see that the trial solution satisfies the boundary conditions
given by Eq. (23) and is finite at n = 1. If �yðnÞ was the true solution, then it would satisfy Eq. (10) identically. An approximate
solution by Galerkin method is found from the requirement that the differential operator of Eq. (10) be orthogonal to the
linear span of {ui} which results into the following equations:
Z 1

0
uiðnÞ ð1� n2Þ2 d4�y

dn4 � 12nð1� n2Þd
3�y

dn3 � 6ð1� 5n2Þd
2�y

dn2 � �x2�y

( )
dn ¼ 0; i ¼ 1;2; ð31Þ
The constants bi are determined from Eq. (31). After calculations the following algebraic system is obtained:
b1 8:0� �x2

5


 �
þ b2 15:0� �x2

6


 �
¼ 0;

b1 7:0� �x2

6


 �
þ b2 14:4� �x2

7


 �
¼ 0:

8><
>: ð32Þ
This system of equations has nontrivial solutions if and only if its determinant is zero, which represents the eigenvalue
equation. Solving this equation, the approximate values of the first two natural frequencies are found to be 5.54 and 20.44.
These values are close to the exact values of 5.576 and 21.18 given in Table 1.
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4. Beams of circular cross-section and parabolic radius variation

4.1. Differential equation

Consider a beam of circular cross-section of parabolic radius variation, Fig. 4. The current radius R*(x) is given by
R�ðxÞ ¼ R0 1� x2

‘2

� �
; x1 < x < ‘: ð33Þ
Using the variable changing given by Eq. (2), the current radius R*, cross-section area A*, and moment of inertia I* can be writ-
ten as
R� ¼ R0 � RðnÞ; A� ¼ A0 � AðnÞ; I� ¼ I0 � IðnÞ; ð34Þ
where R0, A0, and I0 are the reference (at x = 0) radius, cross-section area, and moment of inertia, respectively
A0 ¼ pR2
0; I0 ¼

pR4
0

4
; ð35Þ
and R, A, I are the dimensionless radius, cross-section area, and moment of inertia, respectively
RðnÞ ¼ ð1� n2Þ; AðnÞ ¼ ð1� n2Þ2; IðnÞ ¼ ð1� n2Þ4: ð36Þ
The self-adjoint differential equation (3) becomes
1

ð1� n2Þ2
d2

dn2 ð1� n2Þ4 d2Y

dn2

" #
� �x2Y ¼ 0; n 2 ½n1;1Þ; n1 2 ð�1;1Þ; ð37Þ
or in its expanded form
ð1� n2Þ2 d4Y

dn4 � 16nð1� n2Þd
3Y

dn3 � 8ð1� 7n2Þd
2Y

dn2 � �x2Y ¼ 0: ð38Þ
4.2. General solution, boundary, and frequency equation

Eq. (38) can be factored as
0

0

11 ξ=x
0

Fig. 4. Cantilever of circular cross-section, parabolic radius variation R* = R0(1 � n2), and sharp end.
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ð1� n2Þ d2

dn2 � 6n
d

dn
þ k1

" #
� ð1� n2Þ d2

dn2 � 6n
d

dn
þ k2

" #
� Y ¼ 0; ð39Þ
where
kj ¼ 3þ ð�1Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ �x2

p
; j ¼ 1;2: ð40Þ
Using the variable changing given by Eq. (13), the two second order differential equations of the factored equation (39) be-
come Gauss differential equations with coefficients aj, bj, cj given by
cj ¼ 3
aj þ bj ¼ 5

ajbj ¼ �3þ ð�1Þj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ �x2
p

8><
>: ; j ¼ 1;2: ð41Þ
The general solution given by Eqs. (21) and (41) holds for any boundary conditions of parabolic cantilevers of circular
cross-section. Eqs. (22) and (24) are the general solution and the frequency equation, respectively, of the boundary value
problem of sharp parabolic cantilevers given by Eqs. (38) and (23), where the coefficients aj, bj, cj are given by Eq. (41).
The mode shapes are given by Eqs. (25) and (41). Yet, only sharp parabolic cantilever case is considered for numerical
determinations.

4.3. Numerical determinations of exact modes

The exact natural modes, reported in what follows, are of sharp parabolic cantilevers of circular cross-section. Eq. (24)
with Gauss coefficients given by Eq. (41) has been solved using MATLAB (and MATHEMATICA) for finding the first four nat-
ural frequencies. Different values of the dimensionless coordinate of the fixed end, n1 = �1 + k/10, where k = 3,4, . . . ,17, were
considered. Table 4 shows the first four natural frequencies of the beam. Fig. 5 graphs the first three natural frequencies. All
the necessary coefficients for the first four corresponding mode shapes are given in Tables 5 and 6. The Gauss coefficients are
given in Table 5, and the D coefficients given by Eq. (26) are found in Table 6. For instance one can read for the case of n1 = 0
r natural frequencies �x ¼ x‘2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq0A0Þ=ðEI0Þ

p
of the cantilever given in Fig. 4 versus the dimensionless coordinate of the fixed end n1
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Table 5
Gauss coefficients a1k, a2k of the first four mode shapes k = 1,2,3,4 (see Eq. (25)) of the cantilever given in Fig. 4

n1 a11 a21 a12 a22 a13 a23 a14 a24

�0.7 6.024 4.967 6.799 2.649 8.033 2.5 + 3.480i 9.328 2.5 + 5.303i
�0.6 6.055 4.921 6.998 2.5 + 1.317i 8.324 2.5 + 3.927i 9.704 2.5 + 5.780i
�0.5 6.105 4.847 7.207 2.5 + 1.912i 8.626 2.5 + 4.362i 10.09 2.5 + 6.256i
�0.4 6.175 4.735 7.429 2.5 + 2.408i 8.944 2.5 + 4.799i 10.50 2.5 + 6.744i
�0.3 6.269 4.573 7.671 2.5 + 2.870i 9.286 2.5 + 5.249i 10.94 2.5 + 7.257i
�0.2 6.386 4.343 7.936 2.5 + 3.324i 9.658 2.5 + 5.722i 11.41 2.5 + 7.803i
�0.1 6.531 4.001 8.231 2.5 + 3.787i 10.07 2.5 + 6.229i 11.93 2.5 + 8.396i

0 6.706 3.402 8.564 2.5 + 4.274i 10.53 2.5 + 6.783i 12.52 2.5 + 9.049i
0.1 6.916 2.5 + 1.002i 8.945 2.5 + 4.800i 11.06 2.5 + 7.400i 13.19 2.5 + 9.783i
0.2 7.172 2.5 + 1.824i 9.391 2.5 + 5.384i 11.67 2.5 + 8.100i 13.96 2.5 + 10.62i
0.3 7.485 2.5 + 2.521i 9.923 2.5 + 6.050i 12.40 2.5 + 8.9173i 14.88 2.5 + 11.61i
0.4 7.879 2.5 + 3.230i 10.58 2.5 + 6.836i 13.29 2.5 + 9.899i 16.01 2.5 + 12.81i
0.5 8.389 2.5 + 4.023i 11.41 2.5 + 7.803i 14.43 2.5 + 11.12i 17.44 2.5 + 14.31i
0.6 9.084 2.5 + 4.985i 12.53 2.5 + 9.060i 15.95 2.5 + 12.74i 19.36 2.5 + 16.30i
0.7 10.11 2.5 + 6.272i 14.16 2.5 + 10.83i 18.15 2.5 + 15.05i 22.13 2.5 + 19.16i

Table 6
Coefficients Dk of the first four mode shapes k = 1,2,3,4 (see Eq. (26)) of the cantilever given in Fig. 4

n1

�0.7 �0.6 �0.5 �0.4 �0.3 �0.2 �0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

D1 � 102 50.88 37.14 26.45 18.64 13.17 9.397 6.809 5.019 3.765 2.871 2.224 1.748 1.392 1.122 0.914
�D2 � 104 81.11 52.72 36.40 26.25 19.57 14.98 11.72 9.332 7.549 6.188 5.132 4.300 3.637 3.101 2.663

D3 � 106 113.6 86.18 67.02 53.26 43.10 35.42 29.50 24.86 21.16 18.17 15.73 13.71 12.03 10.62 9.417
D4 � 107 26.07 21.19 17.46 14.59 12.35 10.57 9.128 7.953 6.981 6.170 5.485 4.903 4.403 3.973 3.599
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that the second dimensionless natural frequency is �x2 ¼ 27:35, and the coefficients for the corresponding mode shape given
by Eq. (25) are a12 = 8.564 and a22 = 2.5 + 4.274i from Table 2, and D2 = �9.332 � 10�4 from Table 3. The coefficients
b12 = �3.564 and b22 = 2.5 � 4.274i result from Eq. (41). Therefore, for the case of n1 = 0, the second dimensionless natural
frequency and mode shapes are
�x2 ¼ 27:35; ð42Þ

Y2ðnÞ ¼ 2F1 8:564;�3:564;3;
1� n

2

� �
� 9:332 � 10�4 � 2F1 2:5þ 4:274i;2:5� 4:274i;3;

1� n
2

� �
: ð43Þ
5. Modal characteristics in terms of fixed end cross-section and total length

This section provides the way of expressing the results reported in this paper in terms of fixed end cross-section charac-
teristics and total length of the cantilever, and shows that as the parabolic thickness profile approaches the linear profile so
do the dimensionless natural frequencies. To express the results in terms of fixed end geometrical characteristics and total
length of the cantilever Eq. (1) is written in terms of a new independent variable ~x resulted from a translation of the x coor-
dinate system to the fixed end by x1
~x ¼ x� x1; 0 < ~x < L ð44Þ
L ¼ ‘� x1; ~x0 ¼ �x1; ð45Þ
where L is the total length of the cantilever, ‘ is half of the complete beam (sharp at both ends), x1 is the coordinate of the
fixed end on the x axis (see Fig. 1), and ~x0 is the ~x coordinate of the origin of x axis. The origin of x axis was taken as the
midpoint of the complete beam, the point where the complete beam has its maximum thickness. Eq. (1) in variable x and
Eq. (1) in variable ~x are equivalent, so one can use the results in x for finding the ones in ~x. Denote the dimensionless coor-
dinate corresponding to ~x by g. Therefore
g ¼
~x
L
; 0 < g < 1: ð46Þ
Using Eqs. (44) and (2) the relationship between the two dimensionless coordinates g and n corresponding to x and ~x coor-
dinates, respectively, is
n ¼ g� c
1� c

; c ¼
~x0

L
; ð47Þ
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where the geometric parameter c indicates the dimensionless location of the midpoint of the complete beam with respect to
the fixed end of the actual beam. For instance in Fig. 1 the midpoint of the complete beam is a real point on the actual beam
and it is on the positive ~x axis whose origin is at the fixed end. Consequently ~x0 is positive and less than L, so c is positive and
less than one. If the midpoint of the complete beam was on the negative ~x axis then it would have not been a real point of the
actual beam, and c would have been negative. The larger the absolute value of the negative c the closer the parabolic var-
iation to a linear variation. Using Eq. (47) the mode shapes given by Eq. (25) become
YkðnÞ ¼ 2F1ða1k; b1k; c1;
1� g

2ð1� cÞÞ þ Dk � 2F1 a2k; b2k; c2;
1� g

2ð1� cÞ

� �
; 0 < g < 1 ð48Þ
The dimensionless natural frequencies ~xk in terms of the geometrical characteristics of the fixed end cross-section given
by
~x ¼ xL2

ffiffiffiffiffiffiffiffiffiffiffi
q0A1

EI1

s
; ð49Þ
can be found from the dimensionless natural frequency �x, given in terms of the geometrical characteristics of the cross-sec-
tion at the midpoint of the complete beam, as follows:
~x ¼
�x

ð1� 2cÞ ; ð50Þ
where A1 and I1 are cross-section area and moment of inertia at the fixed end. The relationship between n1 and parameter c is
obtained from Eq. (47) as follows
n1 ¼
�c

1� c
; ð51Þ
since at the fixed end n = n1 and g = 0. The intervals for the two parameters are n1 2 (�1,1) and c 2 (�1,0.5). One can find ~x
using Tables 1 and 2 as follows. For instance to find ~x1 corresponding to �x1 ¼ 8:263 and n1 = 0.2, from Table 1, one uses Eqs.
(51) and (50) and finds c = �0.25 and ~x1 ¼ 5:509, respectively.

An interesting remark is that for n1 = 0, n1 = 0.2, n1 = 0.5, and n1 = 0.7 for which Table 1 provides �x1 ¼ 5:576, �x1 ¼ 8:263,
�x1 ¼ 16:27, and �x1 ¼ 30:47, respectively, one determines c = 0, c = �0.25, c = �1, and c ¼ �2:�3, and the frequencies ~x result
as ~x1 ¼ 5:576, ~x1 ¼ 5:509, ~x1 ¼ 5:423, and ~x1 ¼ 5:377, respectively. This is in good agreement with data reported in the
literature since as c, given by Eq. (47), decreases from zero, the parabolic thickness profile approaches the linear thickness
profile and the values of the dimensionless natural frequencies ~x1 approach the value of �x1 ¼ 5:31 which was reported by
Cranch and Adler (1956) as being the dimensionless natural frequency of linear thickness cantilevers. To see that as c de-
creases from zero the parabolic thickness profile approaches a linear profile, one can find from dimensionless thickness h
expressed in terms of g
hðgÞ ¼ ð1� gÞ 1þ 1
1� 2c

g
� �

ð52Þ
the slope of dimensionless thickness h at the fixed end, g = 0, as follows:
h0ð0Þ ¼ �1þ 1
1� 2c

: ð53Þ
For the values of c = 0, c = �0.25, c = �1, and c ¼ �2:�3, the following values of dimensionless thickness slopes at the fixed
end are obtained 0.0, �0:�3, �0:�6, �0.82. These values approach �1 which is the dimensionless thickness slope of cantilevers
of linear thickness.

6. Discussion and conclusions

Numerous investigators reported transverse vibrations of nonuniform structural elements. They used either analytical or
approximate methods. Yet, closed-form analytical solutions were found only for few classes of nonuniform beams. Other
solutions than those reported in this work were reported in terms of orthogonal polynomials, Bessel functions, or power ser-
ies by Frobenius method. This paper presented the general solution in terms of hypergeometric functions and the exact mod-
al characteristics for transverse vibrations of sharp cantilevers of parabolic variation in two cases, rectangular cross-section
and circular cross-section. Free transverse vibrations in one principal plane developed on the Euler–Bernoulli hypothesis
were considered. The beam geometry considered in this paper consisted of constant width and parabolic thickness variation
if rectangular cross-section, and parabolic radius variation if circular cross-section. The results reported in this work for can-
tilevers of rectangular cross-section can also be used for corresponding cantilevers of elliptical cross-section. The reference
cross-section area and reference moment of inertia given by Eq. (7) have to change to those of elliptical cross-section,
although.

This paper is relevant in a few aspects. It reports the exact mode shapes and the natural frequencies of parabolic canti-
levers which are next to the linear cantilevers as nonuniform geometry. These exact mode shapes and natural frequencies
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can be used (1) as a source of basic design for situations which happen to fall within the geometry and boundary conditions
presented here, (2) for studying forced and nonlinear vibrations of these cantilevers, and (3) as test cases for the develop-
ment of numerical methods. The mode shapes can be used (4) as admissible functions for approximate methods as well.
In general exact mode shapes and natural frequencies have the advantage of being of great ease for further use. In particular,
hypergeometric functions, which are exact mode shapes in this work, are versatile tools. They are included as special math-
ematical functions in very popular commercial software packages such as MAPLE, MATHEMATICA, and MATLAB. Also, their
mathematical properties are well developed Abramovitz and Stegun (1965). The results of this paper are limited to Euler-
Bernoulli cantilevers, i.e. they are not accurate in the case of short cantilevers.

Appendix

This shows that the necessary condition of finite displacement at the sharp end, Eq. (27), is also a sufficient condition for
free boundary, leading to zero bending moment and zero shear force. Two propositions follow. The first proposition shows
that in general if a function is continuous on an interval closed at one end, so finite at this end, and its derivatives are con-
tinuous on the open interval, then these are sufficient conditions for the existence of the limits at this end of certain func-
tions involving function’s derivatives. The second proposition shows that using proposition one zero bending moment and
zero shear force at a sharp end of a parabolic cantilever result. Lagrange’s theorem is used to prove proposition one. La-
grange’s theorem states that if a function y(x) is continuous in a closed interval [a,b], and differentiable in the open interval
(a,b), then there is a c value in (a,b) such that
y0ðcÞ ¼ yðbÞ � yðaÞ
b� a

; ð54Þ
where 0 = dy/dx. Without loss of generality consider b = 1.

Proposition 1. Given a function y(x), continuous on an interval closed at one end (a,1] and its first three derivatives continuous on
the open interval (a,1) then
lim
x!1
ð1� xÞnyðnÞðxÞ ¼ 0; n ¼ 1;2;3: ð55Þ
Proof. Due to continuity of function y(x) at x = 1, y(1) exists and it is finite. According to Lagrange’s theorem there is a c value
such that
yð1Þ � yðxÞ ¼ y0ðcÞð1� xÞ; x < c < 1: � ð56Þ
Thus, using the triangle inequality, it results
jyð1Þ � yðxÞj ¼ jy0ðcÞð1� xÞjP jy0ðcÞð1� cÞjP 0: ð57Þ
If x ? 1, then c ? 1, and jy(1 ) � y(x)j? 0 due to continuity at x = 1 of the function y(x). Therefore
0 P lim
c!1
jy0ðcÞð1� cÞjP 0 ð58Þ
and consequently, using x instead of c, the case of n = 1 of the proposition is obtained
lim
x!1
ð1� xÞy0ðxÞ ¼ 0: ð59Þ
In the case of n = 2, using Lagrange’s theorem for the function g(x) = (1 � x)y0(x).
gð1Þ � gðxÞ ¼ g0ðcÞð1� xÞ; x < c < 1: ð60Þ
It results
�y0ðxÞ ¼ ð1� cÞy00ðcÞ � y0ðcÞ; x < c < 1: ð61Þ
Multiplying by (1 � c) and rearranging terms, Eq. (61) becomes
�ð1� cÞy0ðxÞ þ ð1� cÞy0ðcÞ ¼ ð1� cÞ2y00ðcÞ: ð62Þ
Using the triangle inequality the following is obtained:
jð1� xÞy0ðxÞj þ jð1� cÞy0ðcÞjP j � ð1� cÞy0ðxÞ þ ð1� cÞy0ðcÞj ¼ jð1� cÞ2y00ðcÞjP 0: ð63Þ
If x ? 1, then c ? 1, and both j(1 � x)y0(x)j? 0 and j(1 � c)y0(c)j? 0 due to case n = 1 of the proposition. Therefore
0 P lim
c!1
jð1� cÞ2y00ðcÞjP 0: ð64Þ
Consequently, using x instead of c, the case of n = 2 of the proposition is obtained
lim
x!1
ð1� xÞ2y00ðxÞ ¼ 0: ð65Þ
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In the case of n = 3, using Lagrange’s theorem for function h(x) = (1 � x)2y00(x)
hð1Þ � hðxÞ ¼ h0ðcÞð1� xÞ; x < c < 1 ð66Þ
it results
�ð1� xÞy00ðxÞ ¼ ð1� cÞ2y000ðcÞ � 2cð1� cÞy00ðcÞ; x < c < 1: ð67Þ
Multiplying by (1 � c) and rearranging terms it results
�ð1� cÞð1� xÞy00ðxÞ þ 2cð1� cÞ2y00ðcÞ ¼ ð1� cÞ3y000ðcÞ: ð68Þ
Using the triangle inequality, the following inequalities can be written as
jð1� xÞ2y00ðxÞj þ j2cð1� cÞ2y00ðcÞjP j � ð1� xÞð1� cÞy00ðxÞ þ 2cð1� cÞ2y00ðcÞj ¼ jð1� cÞ3y00ðcÞjP 0: ð69Þ
If x ? 1, then c ? 1, and both j(1 � x)2y00(x)j? 0 and j(1 � c)2y
0
(c)j? 0 due to case n = 2 of the proposition. Therefore
0 P lim
c!1
jð1� cÞ3y000ðcÞjP 0: ð70Þ
Consequently, using x instead of c, the case of n = 3 of the proposition is obtained
lim
x!1
ð1� xÞ3y000ðxÞ ¼ 0: ð71Þ
Proposition 2. The necessary condition of finite displacement Y(n) at the sharp end, n = 1, is a sufficient condition for free
boundary (zero bending moment and zero shear force) at this end for beams of parabolic thickness.

Proof. In general, the dimensionless bending moment M(n) and shear force T(n) are given by
MðnÞ ¼ IðnÞd
2yðnÞ
dn2 ; TðnÞ ¼ dMðnÞ

dn
: � ð72Þ
In the case of parabolic thickness variation, Eq. (72) become
MðnÞ ¼ ð1� n2Þ3 d2yðnÞ
dn2 ; ð73Þ

TðnÞ ¼ ð1� n2Þ3 d3yðnÞ
dn3 � 6nð1� n2Þ2 d2yðnÞ

dn2 ð74Þ
by using the dimensionless cross-section moment of inertia I(n), Eq. (8). Using Proposition 1, the bending moment at the
sharp end is found to be zero
lim
n!1

MðnÞ ¼ lim
n!1
ð1þ nÞ3 lim

n!1
ð1� nÞ � lim

n!1
ð1� nÞ2y00ðnÞ

� �
¼ 0: ð75Þ
Analogously, the shear force at the sharp end is found to be zero
lim
n!1

TðnÞ ¼ lim
n!1
ð1þ nÞ3 � lim

n!1
ð1� nÞ3y000ðnÞ

� �
� lim

n!1
6nð1þ nÞ2 � lim

n!1
ð1� nÞ2y00ðnÞ

� �
¼ 0: ð76Þ
Remark. Another way to prove Proposition 2 without using Proposition 1 is the following. In the case of general solution
given by Eq. (21), as mentioned in the last paragraph of Section 3.3, the finite displacement at the sharp end condition
eliminates the unbounded at n = 1 functions wj2, j = 1,2, and leaves the general solution with only hypergeometric functions
which are continuous and have continuous derivatives at n = 1. This way, because d2y(n)/dn2 and d3y(n)/dn3 are finite at n = 1,
according to Eqs. (73) and (74), both the bending moment and shear force vanish at n = 1.
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