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Abstract

This paper deals with transverse vibrations of nonuniform homogeneous beams and plates. Classes of beams and

axisymmetrical circular plates whose boundary value problems of free transverse vibrations and free transverse

axisymmetrical vibrations, respectively, can be reduced to an eigenvalue singular problem (singularities occur at both ends)

of orthogonal polynomials, are reported. Exact natural frequencies and Jacobi polynomials as exact mode shapes, which

result directly from eigenvalues and eigenfunctions of eigenvalue singular problems of classical orthogonal polynomials,

are reported for these classes. The above classes of beams and plates hereafter called Jacobi classes are given by geometry

and boundary conditions. The geometry consists of parabolic thickness variation, with respect to the axial coordinate for

beams, and with respect to the radius for plates. Beams belonging to this class have either one or two sharp ends

(singularities) along with certain boundary conditions. Plates have zero thickness at zero and outer radii. The boundary

value problems associated with plates, and beams of two sharp ends, are free boundary problems. Two other boundary

value problems, hinged-free and sliding-free, are reported for beams with one sharp end. Also, exact natural frequencies

and mode shapes for uniformly rotating beams with hinged-free boundary are reported.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

During the past few decades, a significant amount of literature reporting either analytical or numerical
solutions has been devoted to transverse vibrations of nonuniform beams, uniformly rotating beams, and
circular plates. The characteristic of the governing differential equations of transverse vibrations of
nonuniform Euler–Bernoulli beams, and classical circular plates, is that they are fourth-order linear equations
with variable coefficients. Closed-form solutions of transverse vibrations have been found for a limited class of
nonuniform beams and plates. New findings in the area of orthogonal polynomials theory [1–3] allow
extending this class.

Transverse vibrations of nonuniform beams have been studied by numerous investigators due to their
relevance to aeronautical, mechanical, and civil engineering. These studies reported either analytical [1,4–22]
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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or approximate [23–37] solutions. Analytical solutions, either orthogonal polynomials [1], solutions in terms of
Bessel functions [4–12], hypergeometric series [13–16] or power series by Frobenius method [17–21], were
reported. A method in which the equation of motion of a class of nonuniform beams is transformed into one
of a uniform beam is presented in Ref. [22]. Approximate methods such as Rayleigh–Ritz, employing either
orthogonal polynomials [22,25,26] or Fourier series [27] as trial functions, Ritz [28], Galerkin [29], finite
difference [30], or finite element [31–37] have been used to obtain approximate natural frequencies of
nonuniform beams.

Most of the nonuniform beams whose transverse vibrations have been investigated were linearly tapered.
They were (1) beams of circular cross-section either truncated [6–9,17], having one sharp end [11,18] or two
sharp ends [1,11], and (2) beams of rectangular cross-section of constant width [4–7,18,27–30,34–36], constant
thickness [11,20,21] or pyramids [5–12]. Among the papers studying transverse vibration of nonuniform beams
of rectangular cross-section, only a few were dedicated to beams with one sharp end [11,17–20] and only two
to the case of two sharp ends [1,11]; all others being dedicated to truncated beams. In Ref. [11], symmetric
compound beams of rectangular cross-section of linear thickness variation and width varying with any
positive power of the longitudinal coordinate are also considered. A few papers presented a more general case
of beams of rectangular cross-section in which the width varied with any positive power of the longitudinal
coordinate and the thickness was either constant [19], linear [6], or varied with any positive power of the
longitudinal coordinate [13,24]. Cases of parabolic thickness variation along with constant width [34] or
singular width at both ends [14] have also been reported. The case of constant thickness and exponential width
has been presented in Ref. [11].

Transverse vibrations of uniformly rotating beams have been considered by several investigators. Power
series solutions were obtained for uniform [38,39], and nonuniform [20] beams. Solutions in terms of
hypergeometric functions were obtained for an entire class of nonuniform beams [14,40] either truncated or
with one end sharp. The finite element method was also used to investigate rotating beams [31].

Free transverse axisymmetric vibrations of circular plates were reported in the literature as well. Power
series solutions [41–44], solutions in terms of Bessel functions [8], and hypergeometric functions [45–47] were
found for nonuniform plates. Approximate methods such as Rayleigh–Ritz [48–53], generalized differential
quadrature [54], and finite element [55] have been also used to study different circular plates of variable
thickness.

One can see that beams and plates are elements of continuous research interest. Recent applications in the
area of MicroElectroMechanical Systems (MEMS), using either beams or plates, have been reported as
follows: analytical models for support loss in clamped-free and clamped–clamped micromachined beam
resonators with in-plane flexural vibrations [56], resonant techniques to characterize the Poisson’s ratio of film
materials [57], exact solutions for the coupled thickness-shear and flexural vibrations of quartz strips with
linearly varying thickness [58], and analysis of a complete hydrophone system, including effects of the
nonuniform plate resonator [59].

Among the results reported in the literature, exact closed-form solutions have a special place due to the fact
that ‘‘they are not only of intrinsic interest, but they also serve as benchmarks against which the accuracy of
various approximate solutions (the Rayleigh–Ritz, Boobnov–Galerkin, finite differences, finite elements,
differential quadrature and others) can be ascertained,’’ [42]. Also, they serve as testing packages for numerical
solvers. A testing package consisting of exact solutions of several second-order Sturm–Liouville boundary
value problems, ‘‘which offer a realistic performance test of the currently available automatic codes for
eigenvalues of the classical Sturm–Liouville problems,’’ can be found in Ref. [60].

Numerical methods, software packages, and commercial software packages have been developed for solving
differential equations, and Boundary Value Problems (BVP). Yet they are limited. A review of numerical
methods for self-adjoint and nonself-adjoint nonsingular boundary eigenvalue Sturm–Liouville problems can
be found in Ref. [61]. A software package, SLEIGN [62], for computing eigenvalues and eigenfunctions of
either regular or singular second-order Sturm–Liouville boundary value problems has been reported in the
literature. In the singular case, SLEIGN ‘‘has no serious competitor,’’ [63]. The only code available dealing
with fourth-order Sturm–Liouville boundary value problems is SLEUTH [64]; yet, limited to regular
problems. Another numerical BVP solver, COLSYS, which implements a method of which the differential
equation is not evaluated at the ends of the interval, so it can be applied to singular problems, ‘‘returned
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numerical solutions which had no resemblance to the true solution for a range of tolerances’’ [65]. Among the
commercial software packages available for solving differential equations, MATHEMATICA is one of the
most successful packages. Yet, its symbolic differential equation solver DSolve, can only ‘‘solve linear
ordinary differential equations of any order with constant coefficients. It can solve also many linear equations
up to second-order with non-constant coefficients’’ [66].

The survey by the author shows that there is a gap in the literature. Nonuniform beams, uniformly rotating
beams, and circular plates, whose exact mode shapes of transverse vibrations are classical orthogonal
polynomials, have not been reported yet, except [1]. It appears that [1] is the only paper reducing the boundary
value problem of transverse vibrations of nonuniform Euler–Bernoulli beams to an eigenvalue singular
problem of a fourth-order differential equation of classical orthogonal polynomials. Yet only beams of
circular cross-section have been considered. Also, only two papers reporting vibrations of beams with two
sharp ends [1,11] can be found in the literature. The survey also shows that there is a continuous effort for
developing numerical methods, numerical solvers, and symbolic solvers, but so far, to the best of our
knowledge, a general solver for boundary singular value problems of fourth-order differential equations has
not been reported in the literature, yet.

The purpose of this paper is to fill this gap finding the class of nonuniform beams and circular plates
along with the necessary boundary conditions in order to have classical orthogonal polynomials as exact
mode shapes of transverse vibrations. This paper reports the classes of nonuniform (1) Euler–Bernoulli
beams of rectangular and/or elliptical cross-section, (2) uniformly rotating Euler–Bernoulli beams, and
(3) circular plates whose exact mode shapes are Jacobi polynomials. These classes hereafter called Jacobi
classes consist of beams and plates of convex parabolic thickness variation with the axial coordinate and
radius, respectively. Specifically, natural frequencies and mode shapes of transverse vibrations are reported in
three boundary cases for nonuniform beams, one boundary case for uniformly rotating beams, and one
boundary case for axisymmetric vibrations of circular plates. These cases can be summarized as follows:
(1) Jacobi beams (sharp at either end) with free–free boundary conditions, (2) Jacobi half-beams, halves
of symmetric complete-beams, with boundary conditions of large end sliding and sharp end free (SF),
(3) Jacobi half-beams with large end hinged and sharp end free (HF), (4) uniformly rotating Jacobi
half-beam with HF boundary, and (5) Jacobi plates, circular plates with zero thickness at zero and outer radii
and free boundary. In all the above boundary value problems, the mode shape equation and boundary value
problem reduce to a fourth-order differential equation of orthogonal polynomials and its eigenvalue singular
problem [1,2]. Results presented in this paper cannot be compared to other papers since no results regarding
these classes of beams and plates can be found in the literature. Even so, the present results are compared to
those of uniform beams and plates, and where possible to beams of near rigidity variation with the axial
coordinate.

Boundary conditions such as those presented in this paper are encountered in civil, micromechanical, and
aeronautical applications. For example, free–free beam boundary conditions have been considered for new
beam-type dynamic absorbers [67], layered piezoelectric beam micromechanical resonators [68,69], and
viscoelastic measurement resonance methods for low-loss materials [70]. Hinged-free beam boundary
conditions have been considered for multibody dynamic systems with flexible components [71,72], and control
in active magnetic bearing systems [73]. Sliding-free beam boundary conditions have been considered for
vibration isolation of structural systems from damaging earthquake ground motion [74,75], and for beams
under compressive loads [76]. An analysis of four models, Euler–Bernoulli, Rayleigh, shear, and Timoshenko,
for the transversely vibrating uniform beam with several boundary conditions is presented in Ref. [77]. Free
edge circular plates have been considered for space structures [78] and hydroelastic analysis of very large
floating platforms [79].

This paper falls in the category of analytical methods and modeling for linear vibration, benchmark
solutions. The novelty of this work consists of presenting (1) a method in which the problem of transverse
vibration of nonuniform elements is reduced to a singular fourth-order Sturm–Liouville eigenvalue problem,
(2) the entire class of nonuniform elements, given by geometry and boundary, for which this method can be
used, and (3) the exact natural frequencies and mode shapes in all these cases. Besides contributing to the
continuous effort of seeking exact solutions for transverse vibrations of nonuniform one- and two-dimensional
continuous systems, this paper can be very useful as reference to researchers interested in developing numerical
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techniques for solving boundary value singular problems. It also can be included in the existing testing
packages. A shorter version of this work was presented in Ref. [80].
2. Differential equations of orthogonal polynomials and eigenvalue singular problems

Orthogonal systems play an important role in analysis, mainly because functions belonging to very general
classes can be expanded in series of orthogonal functions. Classical orthogonal polynomials (Jacobi, Legendre,
Hermite, Laguerre, Chebyshev) are important classes of orthogonal systems. They are commonly encountered
in many applications. In addition to the orthogonal property, orthogonal polynomials are the integrals of
differential equations of a simple form, and can be defined as the coefficients in expansions of powers of t of
suitable chosen functions w(x,t) called generating functions. Recent developments in orthogonal polynomials
theory have been reported. Caruntu [1] presented a fourth-order differential equation of classical orthogonal
polynomials and its associated eigenvalue singular problem. Kwon et al. [3] showed that a classical orthogonal
system satisfying a second-order differential equation also satisfies a differential equation of order N, where N

is an even number and the Nth-order differential operator is a linear combination of iterations of the second-
order operator. Moreover, they showed that orthogonal polynomials satisfying a spectral type differential
equation of order N, where N is greater than 2, must be Hermite polynomials if and only if the leading
coefficient is a nonzero constant. Caruntu [2] reported self-adjoint differential equations, 2r order, for classical
orthogonal polynomials and their associated eigenvalue singular problems, where r is any natural number.

Classical theory of orthogonal polynomials [81] shows that if a(x) and b(x) are two polynomial functions
given by

aðxÞ ¼ a1xþ a0; bðxÞ ¼ b2x
2 þ b1xþ b0; a21 þ b2240 (1)

and the following requirements are met:

1

rðxÞ
drðxÞ
dx
¼

aðxÞ
bðxÞ

, (2)

lim
x!a

rðxÞbðxÞ ¼ lim
x!b

rðxÞbðxÞ ¼ 0, (3)

where r(x) is the weight function of the inner product of classical orthogonal polynomials, and [a,b] is the
interval of orthogonality, then an eigenvalue singular problem associated with a second-order differential
equation is verified by the classical orthogonal polynomials. This is known as Sturm–Liouville problem.
2.1. Second-order differential equation

The Sturm–Liouville problem consists of a second-order linear differential equation with x ¼ a and x ¼ b

singular points and end conditions as follows:

1

rðxÞ
d

dx
rðxÞbðxÞ

dyðxÞ

dx

� �
� l1yðxÞ ¼ 0, (4)

yðaÞ; yðbÞ finite. (5)

This is an eigenvalue singular problem. Its eigenvalues l1,n and eigenfunctions yn(x) are given by Szegö [81]

l1;n ¼ n½a1 þ ðnþ 1Þb2�, (6)

ynðxÞ ¼ QnðxÞ, (7)

where Qn(x) are classical orthogonal polynomials whose weight function is r(x), subscript 1 of l indicates
that Eq. (4) is the first even order differential equation, and the second subscript n of l indicates the
eigenvalue order.
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2.2. Fourth-order differential equation

Caruntu [1] presented a fourth-order differential equation of orthogonal polynomials and the eigenvalue
singular problem associated with this equation. The eigenvalue singular problem reported by Caruntu [1]
can be summarized as follows. Consider the fourth-order differential equation with x ¼ a and x ¼ b

singular points

1

rðxÞ
d2

dx2
rðxÞb2ðxÞ

d2yðxÞ

dx2

� �
� l2yðxÞ ¼ 0, (8)

where l2 is a real constant and [a,b] is the interval of orthogonality. If relations (1)–(3) are satisfied and end
conditions (5) are met, then the eigenvalues l2,n, [1] and [2], are given by

l2;n ¼ nðn� 1Þ½a1 þ ðnþ 1Þb2�½a1 þ ðnþ 2Þb2� (9)

and the eigenfunctions yn(x) ¼ Qn(x) are classical orthogonal polynomials whose weight function is r(x), and
nX2 for l2,n 6¼0.
2.3. Even-order differential equation

Caruntu [2] reported self-adjoint differential equations, 2r order, for classical orthogonal polynomials,
where r is any natural number. He reported the eigenvalue singular problems associated with these equations
as well. The eigenvalue singular problem reported by Caruntu [2] is as follows. Consider the 2r order
differential equation with x ¼ a and x ¼ b singular points

1

rðxÞ
dr

dxr
rðxÞbr

ðxÞ
dryðxÞ

dxr

� �
� lryðxÞ ¼ 0, (10)

where lr is a real constant, and [a,b] is the interval of orthogonality. If relations (1)–(3) are satisfied and the
end conditions (5) are met, then the eigenvalues lr,n of the eigenvalue singular problem given by Eqs. (10) and
(5) are as follows:

lr;n ¼
Yr�1
k¼0

ðn� kÞ½a1 þ ðnþ k þ 1Þb2� (11)

and the eigenfunctions yn(x) ¼ Qn(x) are classical orthogonal polynomials whose weight function is r(x), and
nXr for lr,n 6¼0.
2.4. General even-order differential equation

The eigenvalue singular problem associated with a general 2r differential equation has been also reported by
Caruntu [2]. This problem consists of the following 2r order differential equation:

Xr

i¼1

ci

di

dxi
rðxÞbi

ðxÞ
diyðxÞ

dxi

� �
� mrrðxÞyðxÞ ¼ 0 (12)

along with the end conditions (5), where ci are real constants. The eigenvalues mr,n are given by

mr;n ¼
Xr

i¼1

cili;n, (13)

where li,n are given by Eq. (11), and the eigenfunctions yn(x) ¼ Qn(x) are the classical orthogonal polynomials
of the considered system.
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3. Beam transverse vibration. Equation and boundary

The above results and concepts can be used to study transverse vibrations of nonuniform beams. If certain
requirements are met, then the differential equation of transverse vibrations of nonuniform Euler–Bernoulli
beams can be reduced to a fourth-order differential equation of orthogonal polynomials. Also, certain
boundary value problems of transverse vibrations of beams reduce to eigenvalue singular problems associated
with fourth-order differential equation of orthogonal polynomials.

3.1. Equation

The Euler–Bernoulli differential equation of transverse vibrations of nonuniform beams of length L is as
follows:

d2

dx2
EI1ðxÞ

d2yðxÞ

dx2

� �
� r0o

2A1ðxÞyðxÞ ¼ 0; �
L

2
oxo

L

2
, (14)

where y(x) is the transverse displacement, A1(x) and I1(x) are the area and the moment of inertia of the current
cross-section, respectively; E, r0 and o are Young modulus, mass density and natural frequency, respectively,
and x is the current longitudinal coordinate of the beam. Using the following variable changing:

x ¼ Lx=2, (15)

where x is the current dimensionless longitudinal coordinate of the beam, the dimensionless equation of
transverse vibrations of nonuniform Euler–Bernoulli beam is obtained as follows:

1

AðxÞ
d2

dx2
IðxÞ

d2yðxÞ

dx2

� �
�

r0o
2A0L4

16EI0
yðxÞ ¼ 0; �1oxo1, (16)

where A0 and I0 are the cross-sectional area and moment of inertia at the reference longitudinal coordinate
x ¼ 0, Fig. 1. Eq. (16) is a fourth-order differential equation of orthogonal polynomials, given by Eq. (8), if the
following conditions in terms of cross-sectional dimensionless moment of inertia and area, I(x) and A(x),
respectively, and functions r(x) and b(x) of orthogonal polynomials, are met:

IðxÞ ¼ rðxÞb2ðxÞ; AðxÞ ¼ rðxÞ. (17)
0

0

0

a0

A0, I0

Plane of vibration

Longitudinal coordinate  x

z

y

L

b0

Fig. 1. Jacobi beam of parabolic width a ¼ a0ð1� x2Þ.
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In this case, the dimensionless natural frequencies ō of transverse vibrations are given by

ō ¼ oL2

ffiffiffiffiffiffiffiffiffiffi
r0A0

EI0

s
¼ 4

ffiffiffiffiffi
l2

p
. (18)

3.2. Boundary conditions

Without reducing the generality, consider a beam of finite length over the interval (�1,1) of x. If Eqs. (17)
are satisfied over this interval, then this beam has both ends sharp, Fig. 1, so it cannot sustain any end moment
or shear force. Only free–free boundary conditions are allowed. As shown afterward, free boundaries, i.e. zero
moment and shear force at the ends, are equivalent to finite end displacement in this case. Therefore, the
necessary boundary conditions for reducing the boundary value problem of transverse vibrations to an
eigenvalue singular problem of the fourth-order differential equation of orthogonal polynomials, Eqs. (8) and
(5), are those of both ends free. This can be stated as follows.

If Eqs. (2) and (3), where a ¼ �1 and b ¼ 1, and Eqs. (17) are satisfied then the singular points x ¼ �1 and 1
are evidently sharp ends for the beam and the vibration problem is one of free–free vibrations, which means
zero boundary conditions for bending moment and shear force

MðxÞ ¼ 0; TðxÞ ¼ 0 at x ¼ �1 and x ¼ 1. (19)

This is proved as follows. Since the dimensionless bending moment M(x) and the shear force T(x) are given by

MðxÞ ¼ IðxÞ
d2yðxÞ

dx2
; TðxÞ ¼

dMðxÞ
dx

(20)

using Eqs. (17) and (2), they become

MðxÞ ¼ rðxÞb2ðxÞ
d2yðxÞ

dx2
, (21)

TðxÞ ¼ rðxÞb2ðxÞ
d3yðxÞ

dx3
þ rðxÞbðxÞaðxÞ þ 2rðxÞbðxÞ

dbðxÞ
dx

� �
d2yðxÞ

dx2
. (22)

Provided the displacement y is finite at both ends x ¼ �1 and 1, the derivatives d3y/dx3, d2y/dx2 are finite.
Additionally, a and db/dx are finite because they are polynomials. Therefore, the boundary conditions given by
Eq. (19) are satisfied since rb vanishes at both ends, Eqs. (3).

Consequently, in the case of finite beams, the eigenvalue singular problem of the fourth-order differential
equation of orthogonal polynomials describes only free transverse vibrations of free–free nonuniform beams
sharp at either end. The free–free boundary conditions are consistent with the fact that the beam cannot
sustain any moment or shear force at either sharp end.

4. Transverse vibrations of Jacobi beams

Let us find the class of finite nonuniform beams of rectangular and/or elliptical cross-section whose exact
transverse vibration mode shapes are classical Jacobi orthogonal polynomials. Further, the natural
frequencies of this class are reported. This class hereafter called Jacobi beam class consists of nonuniform
beams of parabolic thickness variation, sharp ends and free–free boundary, as shown afterward. They are
beams of polynomial width variation. Since beams of finite length are studied, finite orthogonality interval of
orthogonal polynomials, corresponding to Jacobi polynomials, is considered.

4.1. Jacobi beams

Weight r(x) and polynomial functions b(x) and a(x) of Jacobi orthogonal polynomials Jp;q
n ðxÞ [81,82] are

rðxÞ ¼ ð1� xÞpð1þ xÞq; bðzÞ ¼ ð1� x2Þ; aðxÞ ¼ �ðpþ qÞxþ q� p, (23)
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Fig. 2. Beams of rectangular and/or elliptical cross-section belonging to the class of Jacobi beams along with their first three bending

mode shapes, and dimensionless width aðxÞ: (a) constant aðxÞ ¼ 1, (b) linear aðxÞ ¼ 1þ x, (c) quadratic aðxÞ ¼ ð1þ xÞ2, (d) convex

parabolic aðxÞ ¼ 1� x2, (e) cubic aðxÞ ¼ ð1� xÞð1þ xÞ2.
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where p and q are real and greater than �1, and the interval of orthogonality is (�1,1). Jacobi polynomials are
given by Abramovitz and Stegun [82] as follows:

Jp;q
n ðxÞ ¼

Xn

k¼0

nþ p

k

� �
nþ q

n� k

� �
ðx� 1Þn�k

ðxþ 1Þk. (24)

Using Eqs. (17) and (23), the dimensionless area and the dimensionless moment of inertia of the cross-
section of such a beam are given by

IðxÞ ¼ ð1� xÞpþ2ð1þ xÞqþ2; AðxÞ ¼ ð1� xÞpð1þ xÞq. (25)

Consequently, the Jacobi beam class, given by its dimensionless width a(x) and dimensionless thickness b(x),
is as follows:

aðxÞ ¼ ð1� xÞp�1ð1þ xÞq�1; bðxÞ ¼ 1� x2; �1oxo1, (26)

where both rectangular and elliptical cross-sections are considered. So, Jacobi beam class consists of beams of
convex parabolic thickness b ¼ b0ð1� x2Þ and polynomial width, sharp at either end, and free–free boundary.
Fig. 1 shows such a beam. Fig. 2 shows few other examples of nonuniform beams belonging to the class of
Jacobi beams given by Eq. (26).

4.2. Geometric interpretation and considerations

Considerations regarding the values that the parameters p and q can get, and a geometric interpretation of
the weight function r(x) and the polynomial functions b(x) and a(x) of orthogonal polynomials are presented
next. According to the theory of classical Jacobi orthogonal polynomials, the real parameters p and q must be
greater than �1. If

pX1 and qX1, (27)

then the width a(x) and the cross-sectional area A(x) vanish at both ends, see Eqs. (25) and (26). In this case, if
the length of the beam is much greater than its width and thickness, the Euler–Bernoulli beam hypothesis is
satisfied and consequently present transverse vibration results are reliable. If at least one of the parameters p

and q is less than 1, then the width a(x) of the beam approaches infinity at least at one of the ends. In this
situation, the Euler–Bernoulli assumption is not verified and consequently the present results of transverse
vibrations are not applicable. According to Eq. (17), the weight r(x) of orthogonal polynomials represents the
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cross-section area of the beam in the dimensionless formulation of transverse vibration. The polynomial
function b(x), found from Eq. (17), represents the dimensionless thickness (the transversal dimension in the
plane of vibration) of the beam of rectangular and/or elliptical cross-section. As resulting from Eqs. (2) and
(17), the function a(x) is given by

aðxÞ ¼
1

aðxÞ
dAðxÞ
dx
¼

dAðxÞ=dx
dAxyðxÞ=dx

, (28)

where A(x) and Axy(x) are the cross-section area and the longitudinal area (xy plane). The function a(x)
represents the ratio of the rate of change of cross-section area to the rate of change of longitudinal area.
The sum p+q is the absolute value of the rate of change of a(x) with respect to the longitudinal coordinate, see
Eq. (23). Furthermore, (q�p) is the rate of change of cross-sectional area dA/dx at zero dimensionless
longitudinal coordinate x ¼ 0 as obtained using Eq. (28) along with Eqs. (23) and (26). Also, (q�p)/(q+p) is
the longitudinal coordinate where cross-sectional area has a maximum as resulting from Eq. (28). Meanwhile,
(q�p)/(q+p) is the longitudinal location of the centroid of the longitudinal sectional area perpendicular to the
plane of vibration as can be found by integrating Eq. (28) between x ¼ �1 and 1. In the particular case q ¼ p,
the maximum of the cross-sectional area and the centroid of the longitudinal sectional area perpendicular to
the plane of vibration, both occur at the zero longitudinal coordinate x ¼ 0, which is consistent in this case
with the symmetry of the beam with respect to the plane x ¼ 0.

The sum p+q, up to a constant coefficient, gives the average rate of relative decrease of the cross-section
area from mid-beam toward ends. It also gives, up to a constant coefficient and an additional term, the
average rate of the relative decrease of beam rigidity from mid-beam toward ends. The rate of relative decrease
of area A with respect to the longitudinal coordinate x is dA/A dx. The average rate of the relative decrease of
the cross-section area A toward the ends is as follows:

½
R 1
0

bðxÞðdAðxÞ=AðxÞÞ þ
R�1
0

bðxÞðdAðxÞ=AðxÞÞ�R 1
�1 bðxÞdx

¼ �
3

4
ðpþ qÞ, (29)

where the thickness b(x), given by Eq. (26), has been used as weight for finding the average rate. Analogously,
the average rate of relative decrease of the rigidity EI from mid-beam toward ends results as follows:

½
R 1
0 bðxÞðdEIðxÞ=EIðxÞÞ þ

R�1
0 bðxÞðdEIðxÞ=EIðxÞÞ�R 1

�1 bðxÞdx
¼ �

3

4
ðpþ qÞ � 3. (30)
4.3. Differential equation and boundary conditions

The fourth-order differential equation of transverse vibrations of a beam belonging to the class given by
Eqs. (26), results from Eq. (16) as follows:

1

ð1� xÞpð1þ xÞq
d2

dx2
ð1� xÞpþ2ð1þ xÞqþ2

d2yðxÞ

dx2

� �
� l2yðxÞ ¼ 0; �1oxo1, (31)

where l2 is given by Eq. (18), and parameters p and q are real and greater than or equal to 1. Since Jacobi
beams are sharp at either end, they cannot sustain boundary moments and shear forces. So, only free–free
boundary conditions are allowed. Consequently, the boundary conditions given by Eqs. (19) reduce to the
following:

yð�1Þ; yð1Þ finite. (32)

The reference cross-sectional area and moment of inertia, A0 and I0, respectively, are considered at the
longitudinal coordinate x ¼ 0, and are given by

A0 ¼ a0b0; I0 ¼
a0b

3
0

12
ðrectangular cross�sectionÞ, (33)
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A0 ¼ pa0b0; I0 ¼
pa0b

3
0

4
ðelliptical cross�sectionÞ; (34)

where a0 and b0 are the reference width and thickness, also considered at x ¼ 0.

4.4. Natural frequencies and mode shapes

Boundary value problem given by Eqs. (31) and (32) is the eigenvalue singular problem of orthogonal
polynomials given by Eqs. (8) and (5). The eigenvalues l2,n and the eigenfunctions yn(x) of this eigenvalue
singular problem are given by Eqs. (9) and (7), respectively, where a1 ¼ �ðpþ qÞ and b2 ¼ �1. Therefore, the
dimensionless natural frequencies ōn, Eq. (18), and the mode shapes yn(x) of the transverse vibration
boundary value problem given by Eqs. (16) and (32), are as follows:

ōn ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffi
l2;nþ1

p
¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þðnþ 2þ pþ qÞðnþ 3þ pþ qÞ

p
, (35)

ynðxÞ ¼ J
p;q
nþ1ðxÞ, (36)

where n is any natural number. The Jacobi orthogonal polynomials Jp;q
n ðxÞ, given by Eq. (24), can be also

found using the Rodriguez formula [81,82]. Fig. 2 shows a few types of beams belonging to this class. The

parameters p and q and the corresponding dimensionless natural frequencies ōn ¼ onL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0A0Þ=ðEI0Þ

p
and

mode shapes ynðxÞ of transverse vibrations of the free–free beams plotted in Fig. 2 are: (a) p ¼ q ¼ 1,

ōn ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þðnþ 3Þðnþ 4Þ

p
, ynðxÞ ¼ J1;1

nþ1ðxÞ, (b) p ¼ 1, q ¼ 2, ōn ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þðnþ 4Þðnþ 5Þ

p
,

ynðxÞ ¼ J1;2
nþ1ðxÞ, (c) p ¼ 1, q ¼ 3, ōn ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þðnþ 5Þðnþ 6Þ

p
, ynðxÞ ¼ J1;3

nþ1ðxÞ, (d) p ¼ q ¼ 2,

ōn ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þðnþ 5Þðnþ 6Þ

p
, ynðxÞ ¼ J2;2

nþ1ðxÞ, (e) p ¼ 2, q ¼ 3, ōn ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þðnþ 6Þðnþ 7Þ

p
,

ynðxÞ ¼ J2;3
nþ1ðxÞ. One can note from Eq. (36) that the mode shapes depend on the parameters p and q while

the natural frequencies ōn given by Eq. (35) depend only on the sum p+q. Since the parameters p and q give
the geometry of the beam, see Eqs. (26), different beams have different mode shapes but the same natural
frequencies as long as the sum p+q is the same.

4.5. Discussion

Table 1 shows numerical values of the first ten natural frequencies of Jacobi beams for values of the
parameter p+q between 2 and 5. Fig. 3 shows the dependence of the first six natural frequencies on the
parameter p+q. It also shows for a comparison the first six dimensionless natural frequencies of a uniform
Table 1

First ten dimensionless natural frequencies oL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0A0Þ=ðEI0Þ

p
of transverse vibrations of Jacobi beams versus parameter p+q

p+q ō1 ō2 ō3 ō4 ō5 ō6 ō7 ō8 ō9 ō10

2 30.98 63.50 103.7 151.8 207.8 271.9 343.9 423.9 511.9 607.9

2.25 32.40 65.95 107.2 156.3 213.3 278.4 351.4 432.4 521.4 618.4

2.5 33.82 68.41 110.6 160.7 218.8 284.9 358.9 440.9 530.9 628.9

2.75 35.24 70.87 114.1 165.2 224.3 291.3 366.4 449.4 540.4 639.4

3 36.66 73.32 117.6 169.7 229.8 297.8 373.9 457.9 549.9 649.9

3.25 38.08 75.78 121.0 174.2 235.3 304.3 381.4 466.4 559.4 660.4

3.5 39.50 78.23 124.5 178.7 240.7 310.8 388.8 474.9 568.9 670.9

3.75 40.91 80.68 128.0 183.1 246.2 317.3 396.3 483.4 578.4 681.4

4 42.33 83.14 131.5 187.6 251.7 323.8 403.8 491.9 587.9 691.9

4.25 43.75 85.59 134.9 192.1 257.2 330.3 411.3 500.3 597.4 702.4

4.5 45.17 88.05 138.4 196.6 262.7 336.7 418.8 508.8 606.9 712.9

4.75 46.58 90.50 141.9 201.0 268.2 343.2 426.3 517.3 616.4 723.4

5 48.00 92.95 145.3 205.5 273.6 349.7 433.8 525.8 625.8 733.9
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Fig. 3. First six dimensionless natural frequencies ō ¼ oL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0A0Þ=ðEI0Þ

p
of free–free vibrations of five sets of Jacobi beams given by

???, p+q ¼ 2; , p+q ¼ 4; , p+q ¼ 6; , p+q ¼ 8; , p+q ¼ 10; and , a uniform beam.

Table 2

First ten dimensionless natural frequencies ō ¼ oL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0A0Þ=ðEI0Þ

p
of free–free vibrations of three Jacobi beams bðxÞ ¼ 1� x2 three

compound beams [11] of dimensionless thickness varying linearly bCðxÞ ¼
1þ x; if � 1oxp0

1� x; if 0oxo1

(
, and a uniform beam

Ref. Thickness Width ō1 ō2 ō3 ō4 ō5 ō6 ō7 ō8 ō9 ō10

Present b(x) 1 30.98 63.50 103.7 151.8 207.8 271.9 343.9 423.9 511.9 607.9

[b(x)]1/2 36.66 73.32 117.6 169.7 229.8 297.8 373.9 457.9 549.9 649.9

b(x) 42.33 83.14 131.5 187.6 251.7 323.8 403.8 491.9 587.9 691.9

[11] bC(x) 1 26.37 43.60 70.85 98.5 135.0 172.8 218.9 266.7 322.6 380.3

[bC(x)]
1/2 33.21 52.32 82.72 112.4 151.9 191.8 240.7 290.7 348.1 409.3

bC(x) 40.70 61.62 95.28 127.0 169.4 211.4 263.2 315.4 376.7 439.0

Uniform 1 1 22.38 61.60 120.9 200.0 298.6 416.0 555.0 712.0 890.6 1088
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beam. Jacobi beam class, Eqs. (26), is characterized by an average rate of relative variation of rigidity EI given
by Eq. (30). As one can see, Table 1 and Fig. 3, the rigidity decrease from the mid-beam toward the ends leads
to greater values of the lower-order natural frequencies and lesser values of the higher-order natural
frequencies of the nonuniform beams when compared with uniform beams. Moreover, an increase of p+q,
which results in an increase of the average rate of relative rigidity reduction toward beam ends, see Eq. (30),
leads within the class of Jacobi beams to an increase of all dimensionless natural frequencies. Table 2 and
Fig. 4 allow for a comparison with data available in the literature. Table 2 presents the first ten dimensionless
natural frequencies of three Jacobi beams, three compound beams of linear thickness variation [11], and a
uniform beam for comparison. The three cases of the nonuniform beams are: constant width, width
proportional to the thickness square root, and width proportional to the thickness. All beams of Table 2 have
the same length L and maximum cross-section (A0, I0). Fig. 4 shows a graphical representation of the first four
natural frequencies of the beams presented in Table 2. As one can see, for free–free boundary conditions,
beams of parabolic thickness variation (Jacobi beams) in all three-width cases have greater values for first-
order natural frequency and lesser values for higher-order natural frequencies when compared with uniform
beams. This is in agreement with the results for compound beams of linear thickness variation reported in
Ref. [11] and graphically represented in Fig. 4. The increase of relative rigidity reduction toward ends leads
within each family of beams, parabolic thickness, and linear thickness [11], to an increase of all dimensionless
natural frequencies as well.
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Fig. 4. (a) First four dimensionless natural frequencies from Table 3, ō ¼ oL2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0A0Þ=ðEI0Þ

p
, of three Jacobi beams of width aðxÞ given

by aðxÞ ¼ bðxÞ, shown in (b), aðxÞ ¼ ½bðxÞ�1=2, shown in (c), a(x) ¼ 1, shown in (d); three compound beams [11] of linear

thickness bCðxÞ ¼
1þ x; if � 1oxp0

1� x; if 0oxo1

(
and width a(x) given by - � � – � � - � � - a(x) ¼ bC(x), shown in (e), – – – – – – a(x) ¼ [bC(x)]

1/2,

shown in (f), - - - - - - - - a(x) ¼ 1, shown in (g); and uniform beam, shown in (h).
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4.6. Jacobi beam of parabolic width variation

This is a beam belonging to the class of Jacobi beams. First natural frequency and mode shape are found
using Eqs. (35), (36), and (24). They are also found using an approximate method, namely Galerkin, for
comparison. Jacobi beams are characterized by parabolic thickness variation bðxÞ ¼ 1� x2. The parabolic
width variation aðxÞ ¼ 1� x2 is obtained from Eq. (26) taking p ¼ 2 and q ¼ 2. This type of beam is shown in
Figs. 1 and 2(d). Its natural frequencies ōn and mode shapes ynðxÞ for transverse vibrations with free–free
boundary are given by ōn ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þðnþ 5Þðnþ 6Þ

p
and ynðxÞ ¼ J2;2

nþ1ðxÞ. The first dimensionless natural
frequency ō1 and mode shape y1ðxÞ in this case are found as

ō1 ¼ 4
ffiffiffiffiffiffiffi
l2;2

p
¼ 16

ffiffiffi
7
p

; y1ðxÞ ¼ J2;2
2 ðxÞ ¼ b1ð1� 7x2Þ. (37)

Next, the Galerkin method is used to find the first dimensionless natural frequency and mode shape of this
beam. It is shown that the same values as those given by Eq. (37) are found. We look for a trial solution for the
Eq. (31) as follows:

ȳðxÞ ¼
X3
i¼1

bijiðxÞ, (38)

where jiðxÞ ¼ xi�1, and bi are adjustable constants, i ¼ 1,2,3. We determine these constants by the
requirement: Z 1

�1

jiðxÞ
d2

dx2
ð1� x2Þ4

d2ȳ

dx2

� �
� l2ð1� x2Þ2ȳ

� �
dx ¼ 0; i ¼ 1; 2; 3, (39)
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where l2 is given by Eq. (18). Indeed, if ȳðxÞ is the true solution, it satisfies Eq. (31) identically; the Galerkin
method requires L2½ȳ� to be orthogonal to the linear span of fjig, where L2 is the differential operator of
Eq. (31). Eq. (39) lead to the following system of three equations in three unknowns bi, i ¼ 1,2,3:

b1l2Pk1 þ b2l2Pk2 þ b3ðl2Pk3 � 16MkÞ ¼ 0; k ¼ 1; 2; 3, (40)

where M2 ¼ 0, Pki ¼ 0 if k+i ¼ 3 and/or k+i ¼ 5, otherwise

Mk ¼ �B
k

2
; 4

� �
þ 6B

k þ 2

2
; 3

� �
; Pki ¼ B

k þ i

2
; 3

� �
. (41)

Here, B(p,q) is Beta Function. This system of equations has a nontrivial solution if and only if the
determinant of the coefficients of system (40) is zero, which represents the eigenvalue equation. Solving this
equation (MATLAB has been used), a value of 112.00 of the eigenvalue l2 results. Therefore, the value of the
first dimensionless natural frequency ō1, according to Eq. (18), can be found as 42.332, which is exactly the
value given by Eq. (37). Substituting the value of l2 into Eq. (40), the trial solution given by Eq. (38) results as
ȳðxÞ ¼ b1ð1� 7x2Þ, which is exactly the first mode shape given by Eq. (37).

5. Transverse vibrations of Jacobi half-beams

The subset of symmetric Jacobi beams of rectangular and/or elliptical cross-section whose bending
vibration mode shapes are Jacobi polynomials is given by Eqs. (26) where p ¼ q and pX1.

5.1. Jacobi half-beam class

Let us now consider half of such a symmetric beam, Fig. 5, hereafter called Jacobi half-beam. It is sharp at
one end only. The differential equation of transverse vibrations of the half-beam is given by Eq. (14), where
0oxol and l ¼ L/2. Consequently, its dimensionless differential equation is Eq. (31), where 0oxo1 and l2 is
given by Eq. (18). The Jacobi half-beam class is given by the width a(x) and thickness b(x) as follows:

aðxÞ ¼ ð1� x2Þp�1; bðxÞ ¼ 1� x2; where 0oxo1 (42)

and sliding- and hinged-free boundary conditions as shown afterward. It can be noticed that the dimensionless
longitudinal coordinate is �1oxo1 for beams, Eqs. (26), and 0oxo1 for half-beams as given by Eq. (42).
One can find that the average rate of the relative decrease of the cross-section area A toward the sharp end
a0

A0, I0

Longitudinal coordinate x

z

y

=L/2

b0

0

0

0 Free end

Sliding and/or

hinged end

Plane of vibration

Fig. 5. Jacobi half-beam of elliptic cross-section and width a ¼ a0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
.
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is as follows: R 1
0 bðxÞðdAðxÞ=AðxÞÞR 1

0
bðxÞdx

¼ �
3

2
p, (43)

where the thickness b(x) given by Eq. (42) has been used as weight for finding the average rate. Analogously,
the average rate of relative decrease of the rigidity EI from mid-beam toward ends results as follows:R 1

0 bðxÞðdEIðxÞ=EIðxÞÞR 1
0

bðxÞdx
¼ �

3

2
p� 3. (44)

The parameter p, up to a constant coefficient and an additional term, gives the average rate of the relative
decrease of beam rigidity toward the sharp end.

5.2. Boundary conditions

Jacobi half-beams have Jacobi orthogonal polynomials as exact mode shapes in two cases of boundary
conditions. These two cases are (1) large end sliding and sharp end free (SF) given by

dy

dx
ð0Þ ¼

d3y

dx3
ð0Þ ¼ 0; yð1Þ finite (45)

and (2) large end hinged and sharp end free (HF) given by

yð0Þ ¼
d2y

dx2
ð0Þ ¼ 0; yð1Þ finite: (46)

Under these conditions, the dimensionless natural frequencies of the Jacobi half-beams can be found from
those of the Jacobi beams (both halves).

5.2.1. SF boundary conditions

The mode shapes of transverse vibrations of SF Jacobi half-beams (0pxp1) are the same with the
symmetric modes of free–free (FF) vibrations of the corresponding Jacobi beam (�1pxp1), except the
domain (as one can notice the domain of x is different). In the mentioned conditions, dimensionless natural
frequencies of Jacobi half-beams are one fourth of those of the corresponding Jacobi beams; this is due to the
reduction in half of the beam length. Let us verify that this is true. The symmetric modes of FF transverse
vibrations of a symmetric Jacobi beam are even degree Jacobi polynomials y2n�1ðxÞ ¼ J

p;p
2n ðxÞ, see Eq. (36),

where n is any natural number and �1oxo1. These Jacobi polynomials are even functions,
J

p;p
2n ð�xÞ ¼ ð�1Þ

2nJ
p;p
2n ðxÞ, [82], i.e. symmetric functions with respect to the longitudinal coordinate x. So they

can be written as polynomials in x2, J
p;p
2n ðxÞ ¼ Pnðx

2
Þ. Using this last form, it can be seen that the first derivative

and the third derivative of J
p;p
2n ðxÞ vanish at x ¼ 0. So, these Jacobi polynomials of even degree satisfy both

boundary conditions (45) and differential Eq. (31). The length of the Jacobi the half-beam is the length of the
symmetric Jacobi beam reduced by half. The reference cross-sectional area A0 and moment of inertia I0 are
considered at x ¼ 0 for both beams. So, the mode shapes �ynðxÞ and dimensionless natural frequencies �on of
half-beam SF boundary value problem of transverse vibrations are expressed in terms of those of the
corresponding symmetric Jacobi beam as follows:

�ynðxÞ ¼ J
p;p
2n ðxÞ; �on ¼ o2n�1‘

2

ffiffiffiffiffiffiffiffiffiffi
r0A0

EI0

s
¼

ō2n�1

4
¼

ffiffiffiffiffiffiffiffiffi
l2;2n

p
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2n� 1Þð2nþ 2pþ 1Þðnþ pþ 1Þ

p
, (47)

where n is any natural number and 0oxo1.

5.2.2. HF boundary conditions

The mode shapes of transverse vibrations of HF Jacobi half-beams (0pxp1) are the same with the
antisymmetric modes of FF vibrations of the corresponding symmetric Jacobi beam (�1pxp1), except the
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Table 3

First ten dimensional natural frequencies o‘2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0A0Þ=ðEI0Þ

p
of transverse vibrations of Jacobi half-beams for sliding-free (SF) boundary

conditions versus parameter p

p ō1 ō2 ō3 ō4 ō5 ō6 ō7 ō8 ō9 ō10

1 7.75 25.92 51.96 85.98 128.0 178.0 236.0 302.0 376.0 458.0

1.125 8.10 26.79 53.33 87.85 130.4 180.9 239.4 305.9 380.4 462.9

1.25 8.46 27.66 54.70 89.72 132.7 183.7 242.7 309.7 384.7 467.7

1.375 8.81 28.53 56.07 91.59 135.1 186.6 246.1 313.6 389.1 472.6

1.5 9.17 29.39 57.45 93.47 137.5 189.5 249.5 317.5 393.5 477.5

1.625 9.52 30.26 58.82 95.34 139.9 192.4 252.9 321.4 397.9 482.4

1.75 9.87 31.13 60.19 97.21 142.2 195.2 256.2 325.2 402.2 487.2

1.875 10.23 32.00 61.56 99.08 144.6 198.1 259.6 329.1 406.6 492.1

2 10.58 32.86 62.93 101.0 147.0 201.0 263.0 333.0 411.0 497.0

2.125 10.94 33.73 64.30 102.8 149.3 203.9 266.4 336.9 415.4 501.9

2.25 11.29 34.60 65.67 104.7 151.7 206.7 269.7 340.7 419.7 506.7

2.375 11.65 35.46 67.04 106.6 154.1 209.6 273.1 344.6 424.1 511.6

2.5 12.00 36.33 68.41 108.4 156.5 212.5 276.5 348.5 428.5 516.5

Table 4

First ten dimensional natural frequencies o‘2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0A0Þ=ðEI0Þ

p
of transverse vibrations of Jacobi half-beams for hinged-free (HF) boundary

conditions versus parameter p

p ō1 ō2 ō3 ō4 ō5 ō6 ō7 ō8 ō9 ō10

1 15.87 37.95 67.97 106.0 152.0 206.0 268.0 338.0 416.0 502.0

1.125 16.49 39.07 69.59 108.1 154.6 209.1 271.6 342.1 420.6 507.1

1.25 17.10 40.19 71.21 110.2 157.2 212.2 275.2 346.2 425.2 512.2

1.375 17.72 41.31 72.84 112.3 159.9 215.4 278.9 350.4 429.9 517.4

1.5 18.33 42.43 74.46 114.5 162.5 218.5 282.5 354.5 434.5 522.5

1.625 18.94 43.55 76.08 116.6 165.1 221.6 286.1 358.6 439.1 527.6

1.75 19.56 44.67 77.70 118.7 167.7 224.7 289.7 362.7 443.7 532.7

1.875 20.17 45.78 79.32 120.8 170.4 227.9 293.4 366.9 448.4 537.9

2 20.78 46.90 80.94 123.0 173.0 231.0 297.0 371.0 453.0 543.0

2.125 21.40 48.02 82.57 125.1 175.6 234.1 300.6 375.1 457.6 548.1

2.25 22.01 49.14 84.19 127.2 178.2 237.2 304.2 379.2 462.2 553.2

2.375 22.62 50.26 85.81 129.3 180.8 240.4 307.9 383.4 466.9 558.4

2.5 23.24 51.38 87.43 131.5 183.5 243.5 311.5 387.5 471.5 563.5
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domain. In the mentioned conditions, dimensionless natural frequencies for half-beams are one fourth of those
of the corresponding symmetric Jacobi beams. Let us prove this. The antisymmetric modes of symmetric
Jacobi beams y2nðxÞ ¼ J

p;p
2nþ1ðxÞ, Eq. (36), are odd functions, J

p;p
2nþ1ð�xÞ ¼ �1ð Þ

2nþ1J
p;p
2nþ1ðxÞ, [82], and therefore

satisfy the boundary conditions given by Eqs. (46). Consequently, the mode shapes
_
ynðxÞ and natural

frequencies o
_

n of the half-beam vibrations in the PF case are as follows:

_
ynðxÞ ¼ J

p;p
2nþ1ðxÞ; o

_
n ¼ o2n‘

2

ffiffiffiffiffiffiffiffiffiffi
r0A0

EI0

s
¼ ō2n=4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2;2nþ1

p
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð2nþ 1Þðnþ pþ 1Þð2nþ 2pþ 3Þ

p
. (48)

Tables 3 and 4 show the first ten dimensionless natural frequencies of Jacobi half-beams for SF and HF
boundary conditions, respectively, versus the parameter p. The parameter p, which gives the width variation,
Eq. (42), also gives the average rate of the relative decrease of beam rigidity toward the sharp end. The larger
the parameter p, the larger the average rate of relative reduction. Table 5 shows for comparison the first
ten dimensionless natural frequencies of three Jacobi half-beams (parabolic thickness variation), three
beams of linear thickness variation [11], and a uniform beam [83]. The three cases for each thickness variation
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Table 5

First ten dimensionless natural frequencies o‘2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0A0Þ=ðEI0Þ

p
of hinged-free (HF) and/or sliding-free (SF) boundary conditions (BC) for

Jacobi half-beams bðxÞ ¼ 1� x2, beams of linear thickness variation bCðxÞ ¼ 1� x, and uniform beams

BC Ref. Thickness Width ō1 ō2 ō3 ō4 ō5 ō6 ō7 ō8 ō9 ō10

HF Present b(x) 1 15.87 37.95 67.97 106.0 152.0 206.0 268.0 338.0 416.0 502.0

[b(x)]1/2 18.33 42.43 74.46 114.5 162.5 218.5 282.5 354.5 434.5 522.5

b(x) 20.78 46.90 80.94 123.0 173.0 231.0 297.0 371.0 453.0 543.0

[11] bC(x) 1 10.90 24.63 43.20 66.68 95.08 — — — — —

[bC(x)]
1/2 13.08 28.11 47.95 72.68 102.3 — — — — —

bC(x) 15.41 31.75 52.86 78.85 109.7 — — — — —

[83] 1 1 15.40 50.00 104.0 178.0 272.0 — — — — —

SF Present b(x) 1 7.75 25.92 51.96 85.98 128.0 178.0 236.0 302.0 376.0 458.0

[b(x)]1/2 9.17 29.39 57.45 93.47 137.5 189.5 249.5 317.5 393.5 477.5

b(x) 10.58 32.86 62.93 101.0 147.0 201.0 263.0 333.0 411.0 497.0

[11] bC(x) 1 6.59 17.71 33.76 54.72 80.64 — — — — —

[bC(x)]
1/2 8.30 20.68 37.96 60.18 87.03 — — — — —

bC(x) 10.18 23.82 42.35 65.80 94.18 — — — — —

[83] 1 1 5.59 30.23 74.64 138.8 222.7 — — — — —
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are: (1) constant width, (2) width proportional to the thickness square root, and (3) width proportional to the
thickness. All beams have the same length ‘ and maximum cross-section (A0, I0). Figs. 6 and 7 show
graphically the first three dimensionless natural frequencies from Table 5 for HF and SF boundary conditions,
respectively. Fig. 6 shows that for SF boundary the first frequency of Jacobi half-beams (parabolic thickness
variation) is greater, and higher order frequencies lesser, than those of uniform beams. Within the Jacobi half-
beam class, the larger the parameter p, the larger the values of all frequencies, i.e. the greater the average rate
of rigidity relative reduction toward the beam ends, the higher values of all frequencies. This is in agreement
with data published in the literature. The same pattern can be seen for beams of linear thickness variation [11]
in Fig. 6. Also, the frequencies of beams of parabolic thickness variation have been obtained to be greater than
those of corresponding beams of linear thickness variation. Fig. 7 shows for HF boundary of Jacobi half-
beams the same properties as for SF boundary. The only difference is that while the first frequency for
parabolic thickness variation is greater than that of the uniform beam, the first frequency for linear thickness
variation [11] is lesser.
6. Transverse vibrations of uniformly rotating Jacobi half-beams

Jacobi polynomials are also mode shapes of transverse vibrations of uniformly rotating half-beams, Fig. 8,
belonging to the class given by Eqs. (42). This occurs when (1) the rotation axis passes through the reference
section x ¼ 0 and is perpendicular to the beam and in the plane of vibration and (2) the boundary conditions
are HF. The differential equation of uniformly rotating beams is given by

d2

dx2
EI1ðxÞ

d2Y ðxÞ

dx2

� �
� O2r0

d

dx

Z ‘

x

zA1ðzÞdz
dY ðxÞ

dx

� �
� r0o

2A1ðxÞY ðxÞ ¼ 0; 0oxo‘ ¼
L

2
, (49)

where the nomenclature is the same as in Section 3. In addition, O is the angular velocity. The axial distributed
force is NðxÞ ¼ O2r0

R ‘
x
zA1ðzÞdz. The boundary conditions [84] for beams subject to axial force are

d

dx
EI1ðxÞ

d2y

dx2

� �
�NðxÞ

dy

dx

� �
dy

‘

0
� EI1ðxÞ

				 d2y

dx2
d

dy

dx

� �
‘

0

				 ¼ 0. (50)
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Fig. 6. (a) First three dimensionless natural frequencies o‘2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0A0Þ=ðEI0Þ

p
from Table 6 for sliding-free (SF) boundary conditions of three

Jacobi half-beams of width a(x) given by a(x) ¼ b(x), shown in (b), a(x) ¼ [b(x)]1/2, shown in (c), a(x) ¼ 1, shown in (d);

three half-beams of linear thickness bC(x) ¼ 1�x [11] and width a(x) given by – � � – � � – � � – a(x) ¼ bC(x), shown in (e), – – – – – –

a(x) ¼ [bC(x)]
1/2, shown in (f), - - - - - - - a(x) ¼ 1, shown in (g); and uniform beam, shown in (h).
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Using the variable changing given by Eq. (15) where ‘ ¼ L=2, Eq. (49) becomes

d2

dx2
ð1� x2Þpþ2

d2yðxÞ

dx2

� �
� Z2

1

2ðpþ 1Þ

d

dx
ð1� x2Þpþ1

dyðxÞ
dx

� �
� ô2
ð1� x2ÞpyðxÞ ¼ 0; 0oxo1, (51)

where ô and Z are dimensionless natural frequency and rotational speed parameter, respectively, given by

ô ¼ o‘2
ffiffiffiffiffiffiffiffiffiffi
r0A0

EI0

s
and Z ¼ O‘2

ffiffiffiffiffiffiffiffiffiffi
r0A0

EI0

s
. (52)

Also, the boundary conditions given by Eq. (50) become

d

dx
ð1� x2Þpþ2

d2y

dx2

� �
� Z2

1

2ðpþ 1Þ
ð1� x2Þpþ1

dy

dx

� �
dy

1

0
� ð1� x2Þpþ2

				 d2y

dx2
d

dy

dx

� �
1

0

				 ¼ 0. (53)

As one can see, Eq. (51) is Eq. (12) where r ¼ 2, m2 ¼ ô2, and r(x), b(x), a(x) and the constants c1 and c2 are
given by

rðxÞ ¼ ð1� x2Þp; bðxÞ ¼ ð1� x2Þ; aðxÞ ¼ �2px; c1 ¼ 1 and c2 ¼ �Z2
1

2ðpþ 1Þ
. (54)

According to Eq. (13), the eigenvalue ô2 of the eigenvalue problem associated with Eq. (51) can be found as

ô2
¼ l2 � Z2

1

2ðpþ 1Þ
l1, (55)
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Fig. 7. (a) First three dimensionless natural frequencies o‘2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0A0Þ=ðEI0Þ

p
from Table 6 for hinged-free (HF) boundary conditions of

three Jacobi half-beams b(x) ¼ 1�x2 of width a(x) given by a(x) ¼ b(x), shown in (b), a(x) ¼ [b(x)]1/2, shown in (c),

a(x) ¼ 1, shown in (d); three half-beams of linear thickness bC(x) ¼ 1�x [11] and width a(x) given by – � � – � � – � � – a(x) ¼ bC(x), shown in

(e), – – – – – a(x) ¼ [bC(x)]
1/2, shown in (f), - - - - - - - a(x) ¼ 1, shown in (g); and uniform beam, shown in (h).

a0

A0, I0

Plane of vibration

Longitudinal coordinate x

z

y

=L/2

b0

0

0

0 Free end

Hinged end

�

Fig. 8. Uniformly rotating Jacobi half-beam, one sharp end and thickness b ¼ b0ð1� x2Þ, of elliptic cross-section and width

a ¼ a0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
.
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where l2 and l1 are eigenvalues of similar eigenvalue problems associated with Eqs. (4) and (8), respectively.
Boundary value problem associated with Eq. (51) gives Jacobi polynomials as exact mode shapes if the
boundary conditions are HF.
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Table 6

First three dimensionless natural frequencies ô ¼ o‘2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0A0=EI0

p
versus the rotational speed parameter Z ¼ O‘2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0A0=EI0

p
for hinged-

free (HF) bounday conditions of Jacobi half-beams, bðxÞ ¼ 1� x2, in three width aðxÞ cases, and uniform beams [85]

Ref. Width Z

0 1 2 3 4 5 6 7 8 9 10

Present 1 ō1 15.88 16.02 16.43 17.10 18.00 19.09 20.35 21.74 23.24 24.83 26.50

ō2 37.95 38.08 38.47 39.12 40.00 41.11 42.43 43.93 45.61 47.43 49.40

ō3 67.97 68.10 68.48 69.12 70.00 71.12 72.46 74.01 75.76 77.70 79.81

Present [b(x)]1/2 ō1 18.33 18.45 18.78 19.33 20.08 21.00 22.07 23.28 24.59 26.00 27.50

ō2 42.43 42.53 42.85 43.37 44.09 45.00 46.09 47.34 48.74 50.29 51.96

ō3 74.46 74.56 74.87 75.38 76.10 77.00 78.09 79.36 80.81 82.41 84.17

Present b(x) ō1 20.79 20.88 21.17 21.63 22.27 23.07 24.00 25.06 26.23 27.50 28.84

ō2 46.90 46.99 47.26 47.70 48.31 49.08 50.00 51.07 52.28 53.62 55.08

ō3 80.94 81.03 81.29 81.72 82.32 83.08 84.00 85.08 86.30 87.67 89.17

[85] ō1 15.42 15.62 16.23 17.18 18.43 19.92 21.59 23.41 25.34 27.36 29.44

ō2 49.97 50.14 50.68 51.55 52.75 54.24 56.01 58.02 60.25 62.67 65.26

ō3 104.2 104.4 104.9 105.8 107.0 108.5 110.3 112.4 114.7 117.3 120.1
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6.1. HF boundary conditions

Jacobi polynomials of odd degree J
p;p
2nþ1ðxÞ are eigenfunctions of the eigenvalue singular problems given by

Eqs. (4) and (5), and Eqs. (8) and (5). Moreover, they are odd functions. Therefore they verify both Eq. (51)
and HF boundary conditions (53) since they verify Eqs. (46). Consequently, the mode shapes ~ynðxÞ and
dimensionless natural frequencies ~on of transverse vibrations of the uniformly rotating half-beam for the
boundary value problem given by Eqs. (51) and (46) are as follows:

~ynðxÞ ¼ J
p;p
2nþ1ðxÞ and ~on ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2;2nþ1 � Z2

1

2ðpþ 1Þ
l1;2nþ1

s
, (56)

where

l2;2nþ1 ¼ 2nð2nþ 1Þð2nþ 2pþ 2Þð2nþ 2pþ 3Þ; l1;2nþ1 ¼ �ð2nþ 1Þð2nþ 2pþ 2Þ. (57)

Eqs. (57) resulted from Eqs. (9) and (6) where a1 ¼ �2p and b2 ¼ �1 due to Eqs. (1) and (54).
Table 6 shows the influence of the rotational speed parameter Z on the first three dimensionless natural

frequencies of three uniformly rotating Jacobi half-beams of parabolic thickness variation. These are beams of
(1) constant width, (2) width proportional to the thickness square root, and (3) width proportional to the
thickness. This table also includes for comparison the case of HF uniformly rotating beam [85]. Fig. 9 presents
graphically the results given in Table 6. As one can see the stiffening effect is shown. The larger the rotational
speed, the larger the values of natural frequencies within the class of rotating beams. When compared to a
uniform beam, the stiffening effect is somewhat reduced.
7. Axisymmetrical vibrations of Jacobi circular plates

Nonuniform plates of u ¼ 1=3, Poisson ratio applicable to many materials, whose exact axisymmetrical
transverse vibration mode shapes are classical Jacobi orthogonal polynomials are reported. Their natural
frequencies are reported as well. This class hereafter called Jacobi plate class consists of nonuniform circular
plates of parabolic thickness variation, zero thickness at zero and outer radii, and free boundary as shown
afterward.
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Fig. 9. (a) Rotational speed parameter Z ¼ O‘2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0A0=EI0

p
influence on the first three dimensionless natural frequencies ô ¼

o‘2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0A0=EI0

p
from Table 7, for Jacobi half-beams, b(x) ¼ 1�x2, of width a(x) given by – � � – � � – � � – a(x) ¼ b(x), shown in (b), – – – – – –

a(x) ¼ [b(x)]1/2, shown in (c), - - - - - - - a(x) ¼ 1, shown in (d); and uniform beam, shown in (e).
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7.1. Differential equation

The class of circular plates whose differential equation of transverse vibrations can be reduced to a
differential equation of orthogonal polynomials, Eq. (12), is found. Consider the free axisymmetrical
vibrations of a circular nonuniform plate the flexural rigidity of which varies with the radius. Such a plate is
governed by the partial differential equation [86]

D
q
qr

@2w

qr2
þ

1

r

qw

qr

� �
þ

qD

qr

@2D

qr2
þ

u
r

qw

qr

� �
¼ �

1

r

Z r

0

r0h
@2w

qt2
rdr, (58)

where r, w(r,t), h(r) and D(r) are the radius, deflection, axial thickness, and flexural rigidity, respectively.
Multiplying Eq. (58) by r and then differentiating it with respect to r, the following form of this partial
differential equation is found:

1

hr

@2

qr2
rD
@2w

qr2

� �
þ

1

hr

q
qr

�
D

r
þ u

qD

qr

� �
qw

qr

� �
¼ �r0

@2w

qt2
; 0oror1, (59)

where r1 is the outer radius. The flexural rigidity is given by

DðrÞ ¼
Eh3
ðrÞ

12ð1� u2Þ
. (60)

Then, Eq. (59) is transformed into a dimensionless differential equation in a new variable x (dimensionless
radius) that is given by

x ¼
r

r1
; 0oxo1. (61)
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This variable changing leads to

hðrÞ ¼ h0hðxÞ; DðrÞ ¼ D0h
3
ðxÞ, (62)

where D0 ¼ Eh3
0=½12ð1� u2Þ�, and hðxÞ is the dimensionless thickness. Separating variables

wðt; xÞ ¼W ðxÞ cosðotþ jÞ, (63)

where W(x) and o are the mode shape and natural frequency, respectively, the dimensionless form of Eq. (59)
is as follows:

1

xhðxÞ
d2

dx2
xh3
ðxÞ

d2W

dx2

� �
þ

1

xhðxÞ
d

dx
�

h3
ðxÞ
x
þ 3nh2

ðxÞ
dhðxÞ
dx

� �
dW

dx

� �
� ō2W ¼ 0, (64)

where ō is the dimensionless natural frequency given by

ō ¼ or21

ffiffiffiffiffiffiffiffiffi
r0h0

D0

s
. (65)

Next, Eq. (64) is reduced to a differential equation of orthogonal polynomials. The domain of the
dimensionless radius 0oxo1 is transformed into the domain (�1,1) of the independent variable of differential
equations of Jacobi orthogonal polynomials, Eq. (12), by the following variable changing:

Z ¼ 2x� 1; �1oZo1. (66)

Therefore, Eq. (64) becomes

1

ðZþ 1ÞhðZÞ
d2

dZ2
ðZþ 1Þh3

ðZÞ
d2W

dZ2

� �
þ

1

ðZþ 1ÞhðZÞ
d

dZ
�

h3
ðZÞ

ðZþ 1Þ
þ 3nh2

ðZÞ
dhðZÞ
dZ

� �
dW

dZ

� �
�

ō2

16
W ¼ 0. (67)

Differential equations (12) and (67) are identical if r ¼ 2 into Eq. (12) and the following conditions are
satisfied along with Eqs. (1)–(3):

rðZÞ ¼ ðZþ 1ÞhðZÞ, (68)

rðZÞb2ðZÞ ¼ ðZþ 1Þh3
ðZÞ, (69)

rðZÞbðZÞ ¼ �
h3
ðZÞ

ðZþ 1Þ
þ 3nh2

ðZÞ
dhðZÞ
dZ

. (70)

Also, the dimensionless natural frequency ō is as follows:

ō ¼ 4
ffiffiffiffiffi
m2
p

, (71)

where m2 is given by Eq. (13).

7.2. Boundary condition

Free boundary of circular plate satisfying Eqs. (68)–(70) and (1)–(3) leads to a boundary value problem
associated with Eq. (67) that is identical with the singular value problem of orthogonal polynomials
Eqs. (12) and (5). The bending moment Mr and the shear force Vr corresponding to Eq. (59) are given by
Elishakoff [44] as

Mr ¼ �DðrÞ
d2w

dr2
þ

n
r

dw

dr

� �
, (72)

Vr ¼ �DðrÞ
d

dr

d2w

dr2
þ

n
r

dw

dr

� �
�

dDðrÞ

dr

d2w

dr2
þ

n
r

dw

dr

� �
. (73)

According to Eqs. (3) and (70), the thickness h(Z) vanishes at Z ¼ �1 and 1. So, the dimensionless thickness
h(x) vanishes at zero and outer dimensionless radii, x ¼ 0 and 1, respectively, due to Eq. (66). Therefore, the
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Fig. 10. Jacobi circular plate (h ¼ 4h0xð1� xÞ, u ¼ 1=3, and free boundary).
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thickness h(r) vanishes at r ¼ 0 and r1, Fig. 10. This circular plate, which has zero thickness at zero and outer
radii, allows only free boundary conditions for the transverse vibration boundary value problem. This is
consistent with the fact that this plate cannot sustain any outer boundary moment or shear force. The finite
displacement of the center of the plate, and the free outer boundary consisting of zero bending moment Mr

and shear force Vr, are given by

wðt; 0Þ finite and Mrðt; r1Þ ¼ V rðt; r1Þ ¼ 0. (74)

Since the thickness vanishes at the outer radius r ¼ r1, and the flexural rigidity D(r) is proportional to the
third power of thickness, Eq. (60), both the flexural rigidity D(r) and its derivative dD(r)/dr also vanish at the
outer radius

Dðr1Þ ¼
dD

dr
ðr1Þ ¼ 0. (75)

Therefore the bending moment Mr and shear force Vr, given by Eqs. (72) and (73), satisfy the free outer
boundary given by Eq. (74) as long as the displacement w(t,r1) is finite. Consequently, the boundary conditions
(74) reduce to

wðt; 0Þ and wðt; r1Þ finite: (76)

7.3. Jacobi circular plates

The class of plates of Poisson ratio u ¼ 1=3 whose mode shapes are Jacobi polynomials is found. As
mentioned above the differential equation of transverse vibrations of circular plates Eq. (58) can be reduced to
an equation, Eq. (67), identical with a differential equation of orthogonal polynomials, Eq. (12), if the
conditions given by Eqs. (68)–(70) and (1)–(3) are met. These conditions along with Poisson ratio u ¼ 1=3 lead
to this class of plates. This class consists of plates of thickness h(r) and flexural rigidity D(r) given by

hðrÞ ¼
4h0

r21
rðr1 � rÞ; DðrÞ ¼

Eh3
ðrÞ

12ð1� u2Þ
; 0oror1, (77)

where r1 and h0 are the outer radius and the maximum thickness that occurs at r ¼ r1/2, respectively. So, the
boundary value problem of transverse vibrations of circular plates can be reduced to an eigenvalue singular
problem of Jacobi orthogonal polynomials as long as the plates are of parabolic thickness variation Eq. (77)
and free boundary, Eq. (76), Fig. 10. The thickness, the flexural rigidity, and the boundary value problem
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written in terms of the dimensionless radius x, given by Eq. (61), are as follows:

h ¼ 4h0xð1� xÞ; D ¼ 64D0x
3
ð1� xÞ3, (78)

1

x2ð1� xÞ

d2

dx2
x4ð1� xÞ3

d2W

dx2

� �
�

1

x2ð1� xÞ

d

dx
x3ð1� xÞ2

dW

dx

� �
�

ō2

16
W ¼ 0, (79)

W 0ð Þ and W 1ð Þ finite. (80)

Eqs. (78)–(80) become as follows when using the variable changing given by Eq. (66)

h ¼ h0ð1� Z2Þ; D ¼ D0ð1� Z2Þ3, (81)

1

ð1þ ZÞ2ð1� ZÞ

d2

dZ2
ð1þ ZÞ4ð1� ZÞ3

d2W

dZ2

� �
�

1

ð1þ ZÞ2ð1� ZÞ

d

dZ
ð1þ ZÞ3ð1� ZÞ2

dW

dZ

� �
�

ō2

16
W ¼ 0, (82)

W ð�1Þ and W ð1Þ finite: (83)
7.4. Natural frequencies and mode shapes

The eigenvalue problem given by Eqs. (82) and (83) is identical with an eigenvalue singular problem of
orthogonal polynomials given by Eqs. (12) and (5), where the last value of the summation index of Eq. (12) is
r ¼ 2, the coefficients ci are c1 ¼ 1 and c2 ¼ �1, and the functions r(Z), b(Z) and a(Z) as resulting from Eqs.
(81), (68), (69) and (2) are as follows:

rðZÞ ¼ ð1� ZÞð1þ ZÞ2; bðZÞ ¼ 1� Z2; aðZÞ ¼ 1� 3Z. (84)

The function r(Z) is the weight of Jacobi polynomials J1;2
n ðZÞ [81,82]. From Eqs. (1) and (84) the leading

coefficients of the polynomials a(Z) and b(Z) are a1 ¼ �3 and b2 ¼ �1. According to Caruntu [2], the
eigenfunctions Wn(Z) of the eigenvalue singular problem given by Eqs. (82) and (83) are Jacobi orthogonal
polynomials J1;2

nþ1ðZÞ, and the eigenvalues are m2;nþ1 ¼ l2;nþ1 � l1;nþ1. Therefore, the boundary value problem
of the free transverse axisymmetrical vibration of the above nonuniform plate, given by Eqs. (79) and (80), has
the following mode shapes Wn(x) and dimensionless natural frequencies ōn:

W nðxÞ ¼ J1;2
nþ1ð2x� 1Þ; ōn ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2;nþ1 � l1;nþ1

p
, (85)

where

l2;nþ1 ¼ nðnþ 1Þðnþ 5Þðnþ 6Þ; l1;nþ1 ¼ �ðnþ 1Þðnþ 5Þ. (86)

Table 7 shows the first ten dimensionless natural frequencies ō ¼ or21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0h0=D0

p
of the Jacobi circular plate

(parabolic thickness variation and free boundary) and uniform circular plates. Fig. 11 shows the first five
natural frequencies presented in Table 7. Fig. 12 shows the first three mode shapes of the Jacobi circular
plates.
Table 7

First ten dimensionless natural frequencies ō ¼ or21
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0h0=D0

p
for free boundary and u ¼ 1=3 of Jacobi circular plate and uniform circular

plate [55]

Ref. Thickness ō1 ō2 ō3 ō4 ō5 ō6 ō7 ō8 ō9 ō10

Present Parabolic 39.19 75.58 119.7 171.8 231.9 299.9 375.9 459.9 551.9 652.0

[55] Uniform 9.07 38.51 87.82 156.9 245.8 354.5 483.1 631.9 801.0 —



ARTICLE IN PRESS

0

50

100

150

200

250

1 3 5

Frequency order

N
at

u
ra

l 
fr

eq
u

en
cy

2 4

Fig. 11. First five dimensionless natural frequencies ō ¼ or21
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Fig. 12. First three mode shapes of transverse vibration of the Jacobi circular plate.

D.I. Caruntu / Journal of Sound and Vibration 306 (2007) 467–494490
8. Discussion and conclusions

Studies dedicated to the mass distribution influence to the response of the structure became very important.
The trend of present-day structures is to be lightweight and to avoid resonant frequencies. A review of the
literature reveals that this is a difficult task, although several investigators focused on the transverse vibration
analysis of nonuniform beams and plates. They used either analytical or approximate methods. Few of them
reported closed-form analytical solutions either in terms of Bessel functions, hypergeometric series or power
series by Frobenius method. To the best of our knowledge, classical orthogonal polynomials were not reported
in the literature to be exact mode shapes of transverse vibrations of nonuniform beams and plates until now,
except the paper of Caruntu [1] that presented a case of nonuniform beam of circular cross-section. Recent
developments of the orthogonal polynomials’ theory [1–3], allowed for this study of bending vibration of
nonuniform beams and plates.

This paper studied free transverse vibrations in one principal plane of nonuniform beams and free
transverse axisymmetrical vibrations of nonuniform plates, developed on the Euler–Bernoulli hypothesis and
classical plate theory respectively, using an approach in which vibration boundary value problems were
reduced to eigenvalue singular problems of orthogonal polynomials [1,2]. This approach led to finding (1)
classes of beams and plates that have Jacobi polynomials as closed-form solutions of the mode shape equation,
(2) boundary conditions that correspond to the eigenvalue singular problem of orthogonal polynomials, and
(3) natural frequencies of these boundary value problems. Specific to these classes was that the equation of
motion is a linear differential equation with two regular singularities, and consequently certain boundary
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conditions were required. Both the class of nonuniform beams and the class of circular nonuniform plates,
found and reported, are characterized by geometry and boundary conditions.

The beam class geometry consisted of convex parabolic thickness variation bðxÞ ¼ 1� x2 and polynomial
width variation aðxÞ ¼ ð1� xÞp�1ð1þ xÞq�1 with the dimensionless longitudinal coordinate x, where p and q

are real parameters greater than or equal to 1. Both, rectangular and elliptic cross-sections were considered.
Four boundary value problems of transverse vibrations of beams belonging to this class have been reported:
(1) Jacobi beams (sharp at either end) with free-free boundary conditions, (2) Jacobi half-beams, i.e. halves of
symmetric Jacobi beams, with the large end sliding and sharp end free (SF), (3) Jacobi half-beams with the
large end hinged and sharp end free (HF), and (4) uniformly rotating Jacobi half-beams with (HF).

The circular plate class geometry consisted of convex parabolic thickness variation hðxÞ ¼ xð1� xÞ, where x
is the current dimensionless radius.

One boundary value problem has been considered, namely Jacobi plate (zero thickness at zero and outer
radii) with free-free boundary conditions.

The results presented in this paper are in agreement with data obtained using approximate methods and
data reported in the literature. Transverse vibrations of a Jacobi beam has been studied using the Galerkin
method also. An agreement between results obtained by using the method described in the paper and this
approximate method has been found.

The dimensionless natural frequencies of three Jacobi beams are compared to those of the uniform beam,
Fig. 4. The values of lower order natural frequencies of these Jacobi beams were found to be greater than those
of the uniform beam. Also, the values of higher order natural frequencies were found to be less than those of
the uniform beam. This is in agreement with data reported in the literature regarding the natural frequencies of
the free–free transverse vibrations of some double tapered complete-beams [11].

The particular case of a Jacobi beam with an elliptical cross-section, with both major and minor diameters
varying parabolically with the axial coordinate, reduces to a beam with a circular cross-section if its diameters
are equal. The mode shapes and natural frequencies of this beam, reported in this paper, are the same as those
reported by Caruntu [1]. When comparing the natural frequencies of a half-beam that is uniformly rotating
with the same non-rotating beam, an increase in natural frequencies was found for the rotating beam, see
Eqs. (41) and (48), and (42) and (50), for (HF) boundary conditions case. This is in agreement with Du et al.
[85]. They reported an increased stiffness of the beam due to rotation.

This paper is relevant in a few aspects. First, it reports the exact mode shapes and the natural frequencies of a
large family of nonuniform beams and circular nonuniform plates for certain boundary conditions. The classes of
beams and circular plates, whose boundary value problems lead to Jacobi polynomials as mode shapes, are found,
and moreover natural frequencies are reported. The advantages of reporting expressions for natural frequencies
and mode shapes, which are Jacobi polynomials, consist of great ease of numerical calculations and parametric
studies. Second, results reported in this paper could be used for studying forced and nonlinear vibrations of these
classes of beams and circular plates. Third, the Jacobi polynomials reported here as exact mode shapes of the
presented boundary value problems can also be used as admissible functions for approximate methods.

The results presented here allow for finding natural frequencies and mode shapes of beams and circular plates
with similar geometry, and boundary conditions like those given in the paper. Fourth, if used along with
Kantorovich method, the approach presented in this paper can be employed to find the mode shapes and the
natural frequencies of transverse vibration of certain rectangular plates with certain boundary conditions. Fifth, the
results of this paper can serve as test cases for the development of computational methods, and not just as a source
of basic design for situations which happen to fall within the geometry and boundary conditions presented here.

The results of this paper are limited to Euler–Bernoulli beams and classical circular plates, i.e. they are not
accurate in the case of short beams and/or thick plates.
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