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We present the exact solution of differential equation in the linear case of free bending 
vibrations of nonuniform beam with rectangular cross-section using the factorization  
method. This beam with constant width and parabolic thickness is a good approximation 
of the gear tooth profile. It permits a nonlinear bending vibrations study (moderately 
large curvatures) of the gear tooth (the cantilever beam case). The case of the beam with 
a sharp end is considered. We use the method of multiple scales to treat the governing 
partial-differential equations and boundary conditions directly. In the absence of internal 
resonance (weakly nonlinear systems) the nonlinear modes are taken to be perturbed 
versions of the linear modes. We determine the nonlinear planar mode shapes and natural 
frequencies of a gear tooth with a sharp end variation (the cantilever beam case). 
 
 
1. Introduction 
 
Recently, the concept of the natural mode of motion of linear systems has been 
generalized to nonlinear systems. A basic property of a natural mode of linear systems is 
invariance. In nonlinear systems invariant motions on a two-dimensional manifold can 
be found. These motions are known as nonlinear mode motion and have been treated in 
many papers.  
    The introduction of [4] presents the actual situation of this area. The concept of 
nonlinear normal modes for undamped, multi-degree-of-freedom system with n-masses 
interconnected by strongly nonlinear symmetric springs has been introduced by the paper 
[6]. The existence of similar normal modes in a symmetric, conservative system has been 
provided by [7].  
    And other authors have determined the nonlinear modes of conservative nonlinear 
systems. The nonlinear modes may be constructed using the linear modes in the case of 
weakly nonlinear systems.  [8,9] have used a center-manifold type reduction to find the 
nonlinear modes. Nayfeh [3] has shown that the method of multiple scales can be used to 
obtain equivalent results with Shaw and Pierre method.  
   In this paper we study the nonlinear vibrations of nonuniform beam with rectangular 
cross-section, constant width, parabolic thickness variation and a sharp end. The 
nonlinear model of moderately large amplitude of vibrations is presented. The general 
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solution of fourth-order differential equation of bending vibrations (the linear case) is 
found. Being a weakly nonlinear system, the nonlinear modes are taken to be perturbed 
versions of the linear modes.  
    The nonlinear mode shapes and natural frequencies are determined using the method 
of multiple scales directly to the governing partial-differential equation of motion and 
boundary conditions (the cantilever beam case). 
 
 
2.  The Differential Equation 
 
For an elastic beam the elementary strain energy is considered as: 
 

xEIkU d
2
1d 2= ,                                                      (1) 

 

where we have used the curvature k and the flexural rigidity EI. For the case of 
moderately large amplitude, the curvature is considered as: 
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where y is considered the transverse displacement. So, the strain energy will be: 
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We denote by l the length of the beam. Using the kinetic energy, the Lagrange partial-
differential equation of motion is obtained as  
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where the mass density 0ρ , the cross-sectional area of beam, the Young’s modulus E 
and the moment of inertia I are considered.  We can rewrite the equation (4) as: 
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We introduce the nondimensional quantities defined by: 
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where W is the characteristic transverse displacement, usually taken as l .  So, the 
partial-differential equation (5) becomes  
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where  
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23
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W
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3.  Formulation of the Problem 
 
The nonuniform beam with constant width, parabolic thickness variation and a sharp end 
case is considered: 
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In this way, the cross-sectional area and the moment of inertia at 0=x , and the 
dimensionless forms of them, are: 
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We examine the nonlinear modes (the case of moderately large amplitude of a cantilever 
beam) of the problem  
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where the linear and the nonlinear operators are: 
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4.  The Solution of the Linear Case 
 
The linear case of the problem (11), (12) means: 
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Considering the solution of partial-differential equation (15) as 
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we obtain the following differential equation: 
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The general solution can be determined using the factorization method (see [2]).    Thus, 
using (10), the differential equation (18) can be factored as: 
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where 
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By variable changing  
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two differential Gauss equations result.  Thus the constants of Gauss equations are: 
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So that the general solution of the equation (19) will be: 
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where the ( )xwi2  functions of Gauss equation theory are: 
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We used, the hypergeometric function ( )x,,b,aF 212 , and ψ the logarithmic derivative of 
Γ  function.   
    For the present beam, the boundary conditions (16) means, 210 ,i,Ci ==  and the 
following frequency equation: 
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So, the mode shapes are: 
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and ( ) ( ) 21,i,bb,aa kiikkiik =ω=ω= . 
 
 
5.  Direct Approach of the Nonlinear Problem 
 
We apply the method of multiple scales directly to the governing partial-differential 
system (11), (12). Introducing a small dimensionless parameter ε as a bookkeeping 
device we obtain the problem: 
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A first-order uniform expansion is considered as 
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where tT =0  is a fast scale and tT ⋅ε=1  is a slow scale, characterizing the nonlinearity 
influence on the natural frequencies. The time derivative becomes: 
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Using the equation (30), and equating coefficients of like powers of ε , from (28), we 
obtain: 
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To construct the nonlinear mode, we write the solution of equation (32) 
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where kA  is undetermined at this moment of approximation. Substituting (36) into (34) 
we obtain 
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Using (10) and (14), we have denoted the nonlinear operators 
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This inhomogeneous equation (37) and the condition (35), have a solution only if a 
solvability condition is satisfied.  
    It means that, the right hand sides of (37) be orthogonal to every solution of the 
homogeneous problem 
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where 
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Because the operator 2L  is self-adjoint with given boundary conditions defined, the 
eigenfunctions ( )xmϕ  corresponding to different eigenvalues mω , are orthogonal.   
    So, for the case of no internal resonance the solvability condition is: 
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This equation governs the amplitude and phase evolution. Using (43), the equation (37) 
becomes  
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The operator N is (see (34) and (37)): 
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In this way the equation (44) can be rewrite: 
 

[ ] ( ) ( ) cceAfeAAfwLwD Ti
kkk

Ti
kkkk kk +ϕα−ϕα−=+ ω∗ω∗ 00 33

1
2

2121
2
0 3          (46) 

 

where  
( ) ( ) ( )kkkkk NNf ϕ+ϕω=ϕ 21

2
1 ,                                        (47) 

 

( ) ( ) ( ) 







+ωϕ−ϕ+ϕω=ϕ

kk

kk

kk

kk
kkkkkkk g

g
g
g

NNf
1

3

1

22
21

2
2 .                    (48) 

 

Then, the solution  1w  can be expressed as: 
 

( ) ( ) ( ) cceAAxheAxhxw Ti
kk

Ti
k

kk ++= ωω 00 2
2

33
11 .                           (49) 

 

Replacing the express of  1w  function in equation (46), two two-point boundary-value 
problems result: 
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Replacing (54) into (50) and using for 1h  the expression 
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Analogously the boundary-value problem (52), (53) has the solution 
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Expressing kA  in the polar form 
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where ka  and kβ  are real and separating equation (43) into real and imaginary parts, we 
obtain for the amplitude and for the phase: 
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So, using (30), (36), (49), (59) and (61), and considering 1=ε , the displacement in 
terms of real variables will be  
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where 0kk ,a β  are constants which represent, respectively, first approximations to the 
amplitude and phase of the motion. The nonlinear natural frequency of the kth mode is: 
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We express the displacement given by equation (62) in terms of position and velocity 
coordinates by letting 
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Thus, considering 
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the displacement will be 
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The spatial correction to the linear mode shape is given by ( )xh1  and ( )xh2 . Using (55) 
and (57), the displacement (67) becomes: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )∑
≠

∗∗












Γ+Γϕ+ϕ=

km
kk

.

kmkkmmkk tqtqtqxtqxt,xw
2

2
3

1 ,               (68) 

where  

∆

ω−ω








+ω

ω
=Γ∗

22

1

3

1

22
21

5
2

1 km

mm

km

mm

km
k

k
km g

g
g
g

 ,                             (69) 

 

∆

ω+ω








+ω=Γ∗

22

1

3

1

22
2

3
2
1 km

mm

km

mm

km
kkm g

g
g
g

 ,                                (70) 

 

( )( )2222 9 kmkm ω−ωω−ω=∆  .                                            (71) 
 

When  0=∆  this construction of nonlinear mode breaks down, it means the case of one-
to-one internal resonance ( km ω≈ω ) and the case of three-to-one internal resonance 
( km ω≈ω 3 ). We assume mω  is away from kω or kω3 . 
 
 
6.  Conclusion 
 
In this paper, we used the method of multiple scales to determine the expressions of the 
nonlinear mode shapes and natural frequencies of a cantilever beam with a constant 
width, parabolic thickness variation and a sharp end, in the case of large amplitude.  
    This method is applied directly to the nonlinear partial differential equation and 
boundary conditions. The linear mode shapes are determined using the factorization 
method. This beam is a good approximation of a gear tooth with a sharp end.  
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