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This paper deals with the factorization of self-adjoint differential operators
Lð2nÞ ¼ 1

q
dn

dxn qbn dn

dxn

� �
, and their spectral type differential equations. Sufficient conditions of

factorization are reported. A large class of differential operators and equations that can
be factorized is obtained. The factorizations of fourth- and sixth-order operators and equa-
tions are explicitly given. A particular fourth-order spectral type differential equation in
which qðxÞ ¼ ð1� xÞpð1þ xÞq, p P 1; q P 1, is considered. Its general solution is obtained
in terms of hypergeometric functions. As application, the natural frequencies and mode
shapes of mechanical transverse vibrations of a nonuniform structure are found.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The goal of this paper is to provide sufficient conditions of factorization of self-adjoint differential equations
1
q

dn

dxn qbn dny
dxn

� �
� ly ¼ 0;
where qðxÞ, b(x) are scalar functions, and l is a positive constant. This result is important for solving various boundary value
problems in mathematics, mechanics, and physics.

Factorization method has been successfully used for instance to obtain solutions of Schr}odinger equations, differential
equations modeling transverse vibration, differential equations of wave propagation, and to decide the existence of liouvil-
lian solutions, Singer [1]. This method consists of writing differential operators and/or equations as a product of lower order
differential operators. Various algorithms and applications requiring this method can be found in the literature.

In mathematics, factorization continues to be a very successful method for solving second-, fourth-, and higher-order dif-
ferential equations. Factorizations of second-order differential equations have been subject to several studies. Hounkonnou
et al. [2] proposed a factorization of the confluent, double confluent, and biconfluent second-order Heun’s differential equa-
tions and investigated their solutions. Ronveaux [3] considered Heun’s equation, a Fuchsian second-order differential equa-
tion with four regular singularities at 0, 1, a, and1. This equation appears in situations relevant to Laplace, Helmholtz, and
Schr}odinger equations, therefore in many applications in electromagnetism, quantum physics, and cosmology. Ronveaux re-
ported that Heun’s operator can be factored into a pair of first order differential operators. This factorization is different than
the well-known factorization methods of Infeld and Hull [4] for second-order differential equations reducible to the Riemann
hypergeometric equation. Berkovich [5] presented methods for factorization, autonomization, and exact linearization of lin-
ear and nonlinear nonautonomous ordinary differential equations of second-order, reduced to linear equations with constant
coefficients. Appropriate algorithms were used to search for transformations, factorizations, and Liouvillian solutions in the
system computer algebra REDUCE in the program SOLDE. Lorente [6] used Rodrigues formula to present a general construc-
tion of raising and lowering operators for orthogonal polynomials of continuous variables. Using Infeld–Hull [4] factorization
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method, he generated from raising and lowering operators the second-order self-adjoint differential operator of hypergeo-
metric type. Berkovich [7] based his research on a uniform theory of factorization and transformation of differential equa-
tions of order equal or greater than two. He developed this method of factorization of differential operators not only in a base
field but also in its algebraic and transcendental extensions. The method was extended to nonlinear equations. He also pro-
posed a new method of exact linearization. Hermann [8] related the Infeld–Hull theory of factorization of second-order dif-
ferential operators to the classical Picard-Vessiot theory and the work by Gelfand, Kirillov, and Herman on Lie algebras in the
field of algebraic extensions of the enveloping associative algebra of a Lie algebra.

Fourth-order differential equations were investigated as well. Everitt et al. [9] reported the factorization of fourth-order
Bessel-type differential equation showing that a factorization of this equation into a pair of second-order differential oper-
ators existed. Foupouagnigni et al. [10] factorized the fourth-order differential equations satisfied by the Laguerre-Hahn
orthogonal polynomials obtained from some perturbations of classical orthogonal polynomials (rth associated, general co-
recursive, general co-dilated, and general co-modified). They found the four linearly independent solutions of the fourth-
order differential equations, and extended from integers to reals the results obtained for the associated classical orthogonal
polynomials with integer order of association. Dosly [11] investigated oscillation and spectral properties of self-adjoint dif-
ferential operators, and devoted a particular attention to fourth-order differential operators with a middle term for which
new nonoscillation criteria were derived. Lewanowicz [12] investigated so called associated polynomials of classical orthog-
onal polynomials. These associated polynomials, known to belong to the Hahn–Laguerre class of orthogonal polynomials,
satisfied a fourth-order differential equation. He showed that the differential operator of the equation can be written as a
sum of two differential operators, one fourth-order, and the other second-order. The fourth-order differential operator be-
longed to the first associated polynomials (or numerator polynomials), and it was factored into a pair of second-order dif-
ferential operators by Ronveaux [3].

Kwon et al. [13] showed that if an orthogonal polynomial system satisfied a certain spectral type differential equation,
then the orthogonal polynomials were Hermite polynomials. Moreover the spectral type differential equation had to be a
linear combination of iterations of a second-order differential equation of type. Further results were reported by Kwon
et al. [14]. The method of factorization has been also used by He and Ricci [15], who defined two sequences of differential
operators for a sequence of polynomials. They constructed these operators for Appel polynomials, and determined their dif-
ferential equations via factorization method introduced by Infeld and Hull [4]. Van Hoeij [16] investigated a fast method to
compute the rational solutions of so-called mixed differential equations. His method can be applied to the factorization of
completely reducible linear differential operators with rational function coefficients.

Physics served as a rich source of mathematical problems from the very beginning, and played a major role in math-
ematics’ development. Several researchers used the method of factorization in their investigations. Kuru [17] studied the
Benjamin–Bona–Mahony (BBM) equation with a fully nonlinear dispersive term by means of the factorization technique.
This partial differential equation described the unidirectional propagation of small-amplitude long waves on the surface
of water in a channel, hydromagnetics waves in cold plasma, and acoustic waves in anharmonic crystals. Assuming trav-
eling wave solutions, the BBM partial differential equation was reduced to a nonlinear, second-order, ordinary differential
equation which was then factorized. Traveling wave solutions of this equation were found in terms of the Weierstrass
function wp and its degenerated trigonometric and hyperbolic forms. They also gave the Lagrangian and the Hamiltonian,
linked to the factorization, for the nonlinear second-order ordinary differential equations associated to the traveling wave
equations. Fahmy [18] used the factorization method to find traveling wave solutions for the following nonlinear second-
order partial differential equations: generalized time-delayed Burgers–Huxley, time delayed convective Fishers, and gen-
eralized time-delayed Burgers–Fisher. Ferapontov and Veselov [19] investigated the factorization method for Schr}odinger
operators with magnetic fields on a two-dimensional surface M2 with nontrivial metric, and brought a new look at clas-
sical problems such as Dirac magnetic monopole and Landau problem. Amirkhanov et al. [20] reported on the Schr}odin-
ger equation in the relativistic space for a relativistic function wðrÞ. This equation was an infinite-order differential
equation with a small parameter at higher derivatives. They considered the fourth-order and sixth-order differential
equations which corresponded to truncations of the higher-order derivatives. The differential equations were factorized
in terms of second-order differential operators. Barut et al. [21] reported a new method of algebraisation of quantum
mechanical eigenvalue equations. Infeld–Hull–Miller factorizations were used to obtain the ladder operators of the
dynamical algebra. Weston [22] factorized the wave equation into a coupled system of wave components for a case
where the field quantities were multivariate functions of spatial variables and the velocity was a function of only one
variable.

Several applications in mechanics used the factorization method for solving second-order and fourth-order differential
equations. Soh [23] obtained isospectral Euler–Bernoulli beams by factorization and Lie symmetry techniques. The Euler–
Bernoulli operator has been factorized as a product of a second-order differential operator and its adjoint. The factorization
was possible provided the coefficients of the factors satisfied a system of nonlinear ordinary differential equations. The sys-
tem reduced to a single nonlinear third-order differential equation, called principal equation and analyzed using Lie group
methods. Caruntu [24,25] reported the factorization of Euler–Bernoulli fourth-order differential operator describing trans-
verse vibrations of nonuniform beams into a pair of commuting Sturm–Liouville second-order differential operators. He also
reported orthogonal polynomials closed-form solutions for transverse vibrations [26,27], and self-adjoint differential equa-
tions of orthogonal polynomials [28]. Rosu and Reyes [29] employed the factorization of Newton’s second-order differential
equation of motion of free damped oscillator to determine the class of damped modes related to common free damping
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modes by supersymmetry. They obtained the Riccati parameter families of damping modes (directly related to Newtonian
free damping) by using Witten’s supersymmetric scheme and the general Riccati solution. Lokshin [30] considered a special
asymptotic factorization of the second-order nonlinear wave equation describing the interaction of a short pulse and a single
wave of finite amplitude moving in opposite directions in a nonlinear rod. Storti and Aboelnaga [31] factorized the fourth-
order differential equation of bending vibrations of a class of variable cross-section rotating beams, found the solution in
terms of hypergeometric functions, and presented a technique of computing natural frequencies and mode shapes as func-
tions of setting angle and rotation rate.

This paper reports a large class of self-adjoint operators and differential equations that can be factorized. A recurrence
relationship between these operators gives sufficient conditions of factorization. Conditions of factorization for fourth-order
operators are different than those for sixth- and higher-order. Finding general solutions of self-adjoint differential equations
depends on the ability of solving the second-order differential equations resulting from factorization. A particular fourth-
order differential equation in which qðxÞ ¼ ð1� xÞpð1þ xÞq, p P 1; q P 1, is presented. Its general solution is found in terms
of hypergeometric functions. As application, transverse vibrations of nonuniform beams are investigated using the factoriza-
tion method.

2. Recurrence of self-adjoint differential operators

A recurrence relationship between self-adjoint ordinary differential operators of order 2n and 2ðnþ 2Þ is presented as
follows.

Lemma. If qðxÞ, b(x), and aðxÞ are scalar functions satisfying the following equation
1
q

dq
dx
¼ a

b
; ð1Þ
then the self-adjoint ordinary differential operators given by
Lð2nÞ ¼
1
q

dn

dxn qbn dn

dxn

� �
; ð2Þ
satisfy the following recurrence relationship
Lð2nÞL2 ¼ Lð2nþ2Þ þ
1
q

dn

dxn n
da
dx
þ nðnþ 1Þ

2
d2b

dx2

" #
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n

k
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þ
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" #
dn�kþ1

dxn�kþ1

( )
;

ð3Þ

where n is any natural number.
Proof. The product of the operators Lð2nÞ and L2 given by Eq. (2) can be written as
Lð2nÞL2 ¼
1
q

dn

dxn qbn dn

dxn
1
q

d
dx

qb
d
dx

� �� �� 	
: � ð4Þ
Using Eq. (1) and the product rule for differentiation one obtains an nþ 1 order derivative term in Eq. (4) as follows
Lð2nÞL2 ¼
1
q

dnþ1

dxnþ1 qbn dn�1

dxn�1 b
d2

dx2 þ aþ db
dx

� �
d
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" #( )
� 1

q
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� �
dn�1

dxn�1 b
d2
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dx

� �
d
dx

" #( )
: ð5Þ
Then, using Leibniz rule (generalized product rule) inside braces of Eq. (5), the following relationship results
Lð2nÞL2 ¼
1
q
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It can be noticed that the first sum of the right-hand side of Eq. (6) gives the operator L(2n+2) when k ¼ 0
Lð2nþ2Þ ¼
1
q

dnþ1

dxnþ1 qbnþ1 dnþ1

dxnþ1

 !
: ð7Þ
Next, the operator dnþ1
=dxnþ1 is reduced to dn

=dxn by applying the operator d=dx to the remaining braced expression of the
first term of the right-hand side of Eq. (6). Regrouping and canceling out terms, Eq. (6) becomes
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Lð2nÞL2 ¼ Lð2nþ2Þ þ
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Shifting the summation indexes of the second and third sums inside braces to have dn�kþ1
=dxn�kþ1 under sums, and can-

celing out terms, Eq. (8) results as
Lð2nÞL2 ¼ Lð2nþ2Þ þ
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Rearranging Eq. (9), it becomes Eq. (3) in its condensed form
Lð2nÞL2 ¼ Lð2nþ2Þ þ
1
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3. Factorization of self-adjoint ordinary differential operators

Two propositions regarding sufficient conditions of factorization of self-adjoint differential ordinary operators will follow.
These two propositions correspond to two cases (1) operators of fourth-order, and (2) operators of sixth-order and higher.

3.1. Factorization of fourth-order operators

Proposition 1. If Eq. (1) is satisfied and
d2a
dx2 þ

d3b

dx3 ¼ 0; ð11Þ
then the fourth-order operator L4 given by Eq. (1) for n = 2 can be factorized as follows
L4 ¼ L2ðL2 � d2Þ; ð12Þ
where d2 is given by
dk ¼ ðk� 1Þ da
dx
þ kðk� 1Þ

2
d2b

dx2 ; ð13Þ
for k ¼ 2, and operators L2 and L4 are given by Eq. (2) for n ¼ 1 and n ¼ 2, respectively.
Proof. If n ¼ 1 in Eq. (3), the third right-hand side term of this equation does not appear since the first value of the summa-
tion index k is 2. So, Eq. (3) becomes
L2L2 ¼ L4 þ
1
q

d
dx

da
dx
þ d2b

dx2

 !
qb

d
dx

" #
: ð14Þ
h

The second term of the right-hand side of Eq. (14) is the operator L2 multiplied by a constant coefficient
d2 ¼ ðda=dxþ d2b=dx2Þ due to Eq. (11). This coefficient is given by Eq. (13) for k = 2. Solving Eq. (14) for L4, one obtains
Eq. (12).

Corollary 1. The class of fourth-order operators of Proposition 1 is given by Eq. (2) for n = 2 and bðxÞ as follows
b ¼ 1
q

Z
qðb0 þ b1xÞdx; ð15Þ
where b0 and b1 are real constants, and qðxÞ is scalar function.
Proof. The scalar function aðxÞ is eliminated from Eqs. (1) and (11). h
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3.2. Factorization of sixth- and higher-order operators
Proposition 2. If Eq. (1) is satisfied and
d2a
dx2 ¼

d3b

dx3 ¼ 0; ð16Þ
then the operators L(2n) of sixth-order and higher, n P 3, can be factorized as follows
Lð2nÞ ¼
Yn

k¼1

ðL2 � dkÞ; ð17Þ
where dk are constants given by Eq. (13), and k is any natural number less than or equal to n. It can be noticed that d1 ¼ 0.
Proof. Due to Eq. (16), the third term of the right-hand side of Eq. (3) is zero. All coefficients inside brackets of this term
are zero since they are derivatives of a and b same order or higher than Eq. (16); the summation index of this term’s
sum is k ¼ 2;3; . . . ;n. Also, the second term of the right-hand side of Eq. (3) reduces to the operator L2 multiplied by a
constant, due to Eq. (16), coefficient dnþ1. This constant coefficient dnþ1 is given by Eq. (13) for k ¼ nþ 1. Consequently,
Eq. (3) becomes
Lð2nÞL2 ¼ Lð2nþ2Þ þ dnþ1Lð2nÞ: � ð18Þ
Solving Eq. (18) for Lð2nþ2Þ and then shifting the index, the recurrence relation can written as
Lð2nÞ ¼ Lð2n�2ÞðL2 � dnÞ: ð19Þ
Using repeated substitution for solving the recurrence relationship Eq. (19), one obtains Eq. (17).

Corollary 2. The class of six- and higher-order operators of Proposition 2 is given by Eq. (2) for n P 3, Eq. (1), and
aðxÞ ¼ a0 þ a1x and bðxÞ ¼ b0 þ b1xþ b2x2 as resulting from Eq. (15), where a0;a1; b0; b1; b2 are real constants.
Remark. The class of the fourth-order differential operators that can be factorized, Corollary 1, is much larger than the class
of sixth- and higher-order operators, Corollary 2. One can notice that any functions a and b that satisfy Eq. (16) will also sat-
isfy Eq. (11). The converse is not true. In the case of sixth- and higher-order operators, the functions a and b are only first and
second degree polynomials, respectively (function q is found using Eq. (1), while in the case of fourth-order operators, qðxÞ is
scalar function, Eq. (15).
4. Factorization of self-adjoint differential equations

In what follows it is showed that the spectral type equations associated to the self-adjoint operators given by Eq. (2) can
be factorized into commuting second-order differential operators. Consequently, the general solution of such spectral type
equations can be written as a sum of solutions of the second-order differential equations resulted from factorization.

4.1. Factorization of self-adjoint equations
Theorem 1. If Eqs. (1) and (11) are satisfied for operators of fourth-order, and/or Eqs. (1) and (16) are satisfied for operators of
sixth-order and higher, then their spectral type equations given by
ðLð2nÞ � lÞ½y� ¼ 0; ð20Þ
can be factorized as follows
Yn

k¼1

ðL2 � kkÞ½y� ¼ 0; ð21Þ
where l is a constant positive parameter, n is any natural number, and constants kk are given by the following system of algebraic
equations
k1 þ k2 þ � � � þ kn ¼ d2 þ � � � þ dn

k1k2 þ k1k3 þ � � � þ kn�1kn ¼ d2d3 þ d2d4 þ � � � þ dn�1dn

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
k1k2 . . . kn ¼ ð�1Þn�1l

8>>><
>>>:

ð22Þ
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Constants dk, k ¼ 2;3; . . . ;n are given by Eq. (13).
Proof. If Eqs. (1) and (11) are satisfied, then Lð2nÞ can be factorized as in Eq. (12). If Eqs. (1) and (16) are satisfied, then the
operator Lð2nÞ can be factorized as in Eq. (17). Therefore, in both cases Eq. (20) can be written as" #
Yn

k¼1

ðL2 � dkÞ � l ½y� ¼ 0; ð23Þ
where the constants dk are given by Eq. (13). Expanding both Eq. (21) and Eq. (23), and equating the coefficients of like terms,
one obtains the following system of algebraic equations
k1 þ k2 þ � � � þ kn ¼ d1 þ d2 þ � � � þ dn

k1k2 þ k1k3 þ � � � þ kn�1kn ¼ d1d2 þ d1d3 þ � � � þ dn�1dn

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
k1k2 . . . kn ¼ d1d2; . . . ; dn þ ð�1Þn�1l

8>>><
>>>:

� ð24Þ
Since d1 ¼ 0, the system given by Eq. (22) is obtained.

4.2. General solution

Theorem 2. The general solution of the spectral type Eq. (20) is given by
y ¼
Xn

k¼1

yk; ð25Þ
where yk are the general solutions of the following second-order differential equations resulting from factorization
L2½yk� � kkyk ¼ 0; k ¼ 1;2; . . . ;n: ð26Þ
The extended form of Eq. (25) is as follows
bðxÞ d
2yk

dx2 þ ½aðxÞ þ b0ðxÞ� dyk

dx
� kkyk ¼ 0 k ¼ 1;2: ð27Þ
If kk is a multiple root, then the corresponding yk functions will be modified accordingly.
Proof. Equation (19) can be factorized as given by Eq. (21). Since ðL2 � kkÞ, k ¼ 1;2; . . . ;n, are commuting operators, the gen-
eral solution of Eq. (21) is the sum of the general solutions of the second-order differential Eqs. (26). h

Fourth- and sixth-order differential equations arise in many engineering applications. In the next two sections the factor-
ization of these operators and their spectral type equations are explicitly given. The general solutions of their spectral type
equations are obtained solving the second-order differential equations resulting from factorization.

5. Factorization of fourth-order differential operators and equations

5.1. Factorization of fourth-order differential operator

The fourth-order differential operator in its self-adjoint form is given by Eq. (2) for n = 2, or in its extended form, provided
Eq. (1) is satisfied, by
L4 ¼ b2 d4

dx4 þ 2bðaþ 2b0Þ d3

dx3 þ b aþ 2b0ð Þ½ �0 þ aðaþ 2b0Þ

 � d2

dx2 ; ð28Þ
where q, b, and a are functions of x. If Eqs. (1) and (11) are satisfied, then the fourth-order differential operator L4 can be
factorized into a pair of second-order commuting operators as given by Eq. (12). The factorization of the operator in its ex-
tended form is as follows
1
q

d2

dx2 qb2 d2

dx2

 !
¼ b

d2

dx2 þ ðaþ b0Þ d
dx

" #
� b

d2

dx2 þ ðaþ b0Þ d
dx
� ða0 þ b0Þ

" #
; ð29Þ
where d2 ¼ a0 þ b00 is a constant as resulting from Eq. (11).

5.2. Factorization of fourth-order spectral type differential equation

The spectral type differential equation of fourth-order differential operator L4 and its factorization are given by Eqs. (20)
and (21) for n = 2, respectively. This factorization in its extended form is as follows
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b
d2

dx2 þ ðaþ b0Þ d
dx
� k1

" #
� b

d2

dx2 þ ðaþ b0Þ d
dx
� k2

" #
¼ 0; ð30Þ
where k1 and k2 are given by
k1 ¼
d2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 þ 4l
q

2
; k2 ¼

d2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 þ 4l
q

2
; ð31Þ
and constant d2 by Eq. (13).

6. Factorization of sixth-order differential operators and equations

6.1. Factorization of sixth-order differential operator

The sixth-order differential operator is given by Eq. (2) for n = 3, or in extended form, provided Eq. (1) is satisfied, by
L6 ¼ b3 d6

dx6 þ 3b2ðaþ 3b0Þ d5

dx5 þ 3 ½b2ðaþ 3b00Þ�0 þ abðaþ 3b0Þ

 � d4

dx4

þ ½b2ðaþ 3b00Þ�0 þ 2abðaþ 3b0Þ0 þ a0bðaþ 3b0Þ þ aðaþ 3b0Þ2
n o d3

dx3 ; ð32Þ
where q, b, and a are functions of x. If Eqs. (1) and (16) are satisfied, then the sixth-order differential operator L6 can be fac-
tored into three second-order commuting operators as given by Eq. (17) for n = 3, where d1, d2, d3 are given by Eq. (13). The
extended form of the factorization of the operator L6 is as follows
1
q

d3

dx3 qb3 d3

dx3

 !
¼ b

d2

dx2 þ ðaþ b0Þ d
dx

" #
� b

d2

dx2 þ ðaþ b0Þ d
dx
� ða0 þ b00Þ

" #
� b

d2

dx2 þ ðaþ b0Þ d
dx
� ð2a0 þ 3b00Þ

" #
: ð33Þ
6.2. Factorization of sixth-order differential equation

The spectral type equation of the sixth-order differential operator L6 and its factorization are given by Eqs. (20) and (21)
for n = 3, respectively. The factorization in its extended form is as follows
b
d2

dx2 þ ðaþ b0Þ d
dx
� k1

" #
� b

d2

dx2 þ ðaþ b0Þ d
dx
� k2

" #
� b

d2

dx2 þ ðaþ b0Þ d
dx
� k3

" #
½y� ¼ 0; ð34Þ
where k1, k2, and k3 are given by Eq. (22).

7. Factorization of fourth-order differential equation with qðxÞ ¼ ð1� xÞpð1þ xÞq, p >1; q >1

In this section, a particular case of fourth-order spectral type differential equation, qðxÞ ¼ ð1� xÞpð1þ xÞq, p P 1; q P 1,
is considered. One can notice that the function qðxÞ is the weight function of Jacobi orthogonal polynomials. Using the fac-
torization method the general solution of the fourth-order differential equation is found in terms of hypergeometric
functions.

Proposition 3. If Eq. (1) is satisfied, and
qðxÞ ¼ ð1� xÞpð1þ xÞq; where p P 1; q P 1; ð35Þ
then the spectral type fourth-order self-adjoint differential equation (20) for n = 2 is given by
1
ð1� xÞpð1þ xÞq

d2

dx2 ð1� xÞpþ2ð1þ xÞqþ2 d2y

dx2

" #
� ly ¼ 0; ð36Þ
or in its extended form
ð1� x2Þ2 d4y

dx4 þ 2ð1� x2Þ �ðpþ qþ 4Þxþ q� p½ �d
3y

dx3 þ ðpþ qþ 3Þðpþ qþ 4Þx2 þ 2ðp� qÞðpþ qþ 3Þxþ ðq� pÞ2
h

�p� q� 4�d
2y

dx2 � ly ¼ 0; ð37Þ
The general solution of Eq. (36) and/or Eq. (37) is as follows
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yðxÞ ¼ A1 � 2F1 a1; b1; c1;
1� x

2

� �
þ A2 � 2F1 a2; b2; c2;

1� x
2

� �
þ B1 �w a1; b1; c1;

1� x
2

� �
þ B2 �w a2; b2; c2;

1� x
2

� �
; ð38Þ
where l is real and positive, and ai, bi, ci are the constant parameters of the canonical form of Gauss equations, Abramovitz and
Stegun [32]
xð1� xÞd
2y

dx2 þ ½ci � ðai þ bi þ 1Þx� dy
dx
� aibix ¼ 0 ð39Þ
and they are given by
ci ¼ pþ 1
ai þ bi ¼ pþ qþ 1
aibi ¼ ki

8><
>: ; i ¼ 1;2 ð40Þ
The hypergeometric function 2F1ða; b; c; xÞ is given by
2F1ða; b; c; xÞ ¼ 1þ
X1
n¼1

ðaÞnðbÞn
ðcÞn

xn

n!
: ð41Þ
The function wða; b; c; xÞ is as follows, Abramovitz and Stegun [32]
wða; b; c; xÞ ¼ x1�c � 2F1ða� c þ 1; b� c þ 1;2� c; xÞ; if c > 0; c R N; ð42Þ

wða; b; c; xÞ ¼ 2F1ða; b;1; xÞ ln xþ
X1
n¼1

ðaÞnðbÞn
ðn!Þ2

xnWða; b;n;0Þ; if jxj < 1; c ¼ 1; ð43Þ

wða; b; c; xÞ ¼ 2F1ða; b;mþ 1; xÞ ln xþ
X1
n¼1

ðaÞnðbÞn
ðn!Þðmþ 1Þn

xnWða; b; n;mÞ �
Xm

n¼1

ðn� 1Þ!ð�mÞn
ð1� aÞnð1� bÞn

x�n; if c ¼ mþ 1 2 N ; ð44Þ
where
Wða; b;n;mÞ ¼ wðaþ nÞ � wðaÞ þ wðbþ nÞ � wðbÞ � wðmþ nþ 1Þ þ wðmþ 1Þ � wðnþ 1Þ þ wð1Þ ð45Þ
and w is the logarithmic derivative of C function. The Pochhammer symbol or rising factorial ðaÞn is given by
ðaÞn ¼
Cðaþ nÞ

CðaÞ ¼ aðaþ 1Þ � � � ðaþ n� 1Þ; ð46Þ
where n = 1,2,3, . . .

Proof. If Eqs. (1) and (35) are satisfied, then b and a are polynomial functions given by
bðxÞ ¼ 1� x2; aðxÞ ¼ �ðpþ qÞxþ q� p: � ð47Þ

In this case Eq. (11) is satisfied. Therefore the factorization method can be used, Proposition 3. Using Eqs. (35) and (47),

the differential Eq. (20) becomes Eq. (36). Using Eq. (30), the differential Eq. (36) is factorized into a pair of second-order
commuting operators as follows
Y2

i¼1

ð1� x2Þ d2

dx2 þ ½p� qþ ðpþ q� 2Þx� d
dx
� ki

( )
½y� ¼ 0; ð48Þ
Where i = 1,2, k1 and k2 are given by Eq. (31), and the constant d2 results from Eqs. (13) and (47) as follows
d2 ¼ �p� q� 2: ð49Þ
The general solution of Eq. (36) can be written as the sum of general solutions of the two second-order differential equa-
tions resulting from Eq. (48), Theorem 2. Since p and q are assumed greater than or equal to 1, Eq. (35), one can see from Eq.
(49) that d2 < 0. Also, because l > 0 from Eqs. (31), k1 and k2 must have different signs
k1 > 0; k2 < 0: ð50Þ
To solve the two second-order differential Eqs. (48), the following variable changing is used
x ¼ 1� 2z: ð51Þ
Therefore Eq. (48) become Gauss equations as follows
zð1� zÞ d
2yi

dz2 þ ½pþ 1� ðpþ qþ 2Þz� dyi

dz
� kiyi ¼ 0; i ¼ 1;2: ð52Þ
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The canonical form of a Gauss equation is given by Eq. (39). Using Eqs. (52) and (39), the constant parameters ai; bi; ci

of the canonical form of Gauss equation result as in Eq. (40). Therefore, the general solutions of Eq. (52) are given by,
Abramovitz and Stegun [32].
yiðzÞ ¼ Ai � 2F1ðai; bi; ci; zÞ þ Bi �wðai; bi; ci; zÞ; i ¼ 1;2; ð53Þ
where 2F1ða; b; c; xÞ and wða; b; c; xÞ are given by Eqs. (41)–(46). The general solution of Eq. (36) is the sum of the general solu-
tions given by Eqs. (53) and (51). In conclusion, the general solution Eq. (38) of the differential Eq. (36) is obtained.

Remark. The eigenvalue problems associated to spectral type Eq. (36) can be either regular�1 < x1 6 x 6 x2 < 1, singular at
one end such as �1 < x1 6 x < 1, or singular at both ends �1 < x < 1. In the first two cases, eigenfunctions and eigenvalue
equations are written in terms of hypergeometric functions.
8. Application: free bending vibrations of nonuniform beams

The above concepts can be used to study bending vibrations of nonuniform beams. The beams considered in this section
are cantilevers with rectangular cross-section, parabolic thickness variation with the longitudinal coordinate, constant
width, and one sharp end. The boundary conditions are fixed-free. The sharp end is free since it cannot sustain any bending
moment or shear force. The natural frequencies and mode shapes of transverse vibrations of this beam are to be found.

8.1. Differential equation of transverse vibrations

The dimensionless differential equation of transverse vibrations of Euler–Bernoulli beams is as follows, Caruntu [24]
d2

dx2 IðxÞd
2yðxÞ
dx2

" #
� q0‘

4x2

E
AðxÞyðxÞ ¼ 0; ð54Þ
where x is the dimensionless longitudinal coordinate of the beam, taken as the dimensional longitudinal coordinate divided
by ‘ which is a reference length, see Fig. 1 in Ref. [24]. The mode shape of vibration is yðxÞ, Young modulus E, cross-section
moment of inertia IðxÞ, cross-section area AðxÞ, density q0, and frequency x. Consider a cantilever beam of constant width w0

and thickness given by
hðxÞ ¼ h0ð1� x2Þ; 1 < x1 < x < 1; ð55Þ
where h0 is the reference radius, and x1 is the dimensionless longitudinal coordinate of the fixed end. The cross-section area
AðxÞ and moment of inertia IðxÞ are
AðxÞ ¼ A0ð1� x2Þ; IðxÞ ¼ I0ð1� x2Þ3; ð56Þ
where A0 and I0 are the reference corresponding cross-section quantities
A0 ¼ w0h0 I0 ¼
w0h3

0

12
: ð57Þ
Replacing Eq. (56) into Eq. (54), the following equation, which is Eq. (36) for p = 1 and q = 1, results
1
ð1� x2Þ

d2

dx2 ð1� x2Þ3 d2yðxÞ
dx2

" #
� l � yðxÞ ¼ 0; ð58Þ
where
l ¼ q0A0‘
4

EI0
x2: ð59Þ
8.2. Natural frequencies and mode shapes

Using Eqs. (1), (35), (36), and Eq. (58), one obtains
q ¼ ð1� x2Þ; b ¼ 1� x2; a ¼ �2x: ð60Þ
The fixed-free boundary conditions of the cantilever beam consist of zero deflection and zero slope at the fixed end, and
finite deflection at the free end (see Caruntu [24]), and they are as follows
yðx1Þ ¼
dy
dx
ðx1Þ ¼ 0; yð1Þ finite ð61Þ
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According to Proposition 3, the general solution of Eq. (58) is given by Eq. (58) which includes functions w given by Eqs.
(42)–(44). Since the functions w are not finite at the sharp end (x = 1 in Eq. (38)) and yð1Þ must be finite, the coefficients of
the functions w must be zero
B1 ¼ B2 ¼ 0: ð62Þ
Using the general solution and the two boundary conditions at x ¼ x1 given by Eq. (61) one obtains the natural frequency
equation, Caruntu [24], from which the natural frequencies and consequently the mode shapes can be found. Numerical sim-
ulations in this case of nonuniform cantilever have been conducted in Ref. [24]. For instance in the case of x1 ¼ 0, the second
dimensionless natural frequency �x ¼ x‘2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðq0A0Þ=ðEI0Þ
p

and the corresponding mode shape are as follows
�x2 ¼ 21:183; ð63Þ

y2ðnÞ ¼ 2F1 6:5525;�3:5525;2;
1� n

2

� �
� 17:779 � 10�4 � 2F1 1:5þ 4:12644i;1:5� 4:12644i;2;

1� n
2

� �
: ð64Þ
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