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This paper deals with the eigenvalue singular problem of the spectral type differential
equations of the fourth-order self-adjoint differential operators
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" #
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where, p P 1; q P 1. It has been reported in the literature that spectral type differential
equations above have general solutions in terms of hypergeometric functions. In this work
it is showed that the general solution in terms of hypergeometric functions reduces to
Jacobi orthogonal polynomials (as eigenfunctions) in the case of eigenvalue singular
problem. The corresponding eigenvalues are found. As application, the natural frequencies
and mode shapes of mechanical transverse vibrations of a nonuniform singular structure
are reported.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The goal of this paper is to find the eigenfunctions and eigenvalues of the eigenvalue singular problem of the fourth-order
self-adjoint differential equation
1
ð1� xÞpð1þ xÞq

d2

dx2 ð1� xÞpþ2ð1þ xÞqþ2 d2y

dx2

" #
� ly ¼ 0; yð�1Þ; yð1Þ finite;
where p P 1; q P 1, and l is a positive constant.
Factorizations of fourth-order differential equations have been reported in the literature as follows: (1) the factorization

of fourth-order Bessel-type differential equation into a pair of second-order differential operators [1]; (2) the factorization of
fourth-order differential equations satisfied by the Laguerre–Hahn orthogonal polynomials obtained from some perturba-
tions of classical orthogonal polynomials [2] (four linearly independent solutions of the fourth-order differential equations
have been found and extended from integers to reals for the associated classical orthogonal polynomials with integer order
of association); (3) the fourth-order differential equation satisfied by associated polynomials belonging to Hahn–Laguerre
class of classical orthogonal polynomials [3] has been written as a sum of two differential operators, of which one fourth-
order that has been factorized [4]; (4) the factorization of fourth-order and sixth-order differential equations which corre-
sponded to truncations of higher-order derivatives for Schr}odinger equation [5]; (5) the factorization of Euler–Bernoulli
fourth-order differential operator describing transverse vibrations of nonuniform beams into a pair of commuting Sturm–
Liouville second-order differential operators [6,7]; (6) factorization of Euler–Bernoulli operator provided the coefficients
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of the factors satisfied a system of nonlinear ordinary differential equations [8] (the system reduced to a single nonlinear
third-order differential equation called principal equation and analyzed using Lie group methods); (7) the factorization of
the fourth-order differential equation of bending vibrations of a class of variable cross-section rotating beams [9] (a tech-
nique of computing natural frequencies and mode shapes as functions of setting angle and rotation rate has been reported).
Closed form solutions involving classical Jacobi orthogonal polynomials have been reported in the literature for transverse
vibrations [10,11], and self-adjoint differential equations [12].

Two very important results related to this paper are as follows. First, classical orthogonal polynomials satisfy even order
self-adjoint spectral type differential equations [12]. The factorization method has not been used in [12]. Second, the same
even order self-adjoint spectral type differential equation can be factorized [13]. In particular, it has been reported that the
above given spectral type differential equation has a general solution in terms of hypergeometric functions.

The contribution of this paper consists of showing that (1) the general solution in terms of hypergeometric functions of
the fourth-order self-adjoint differential equation of this work reduces to Jacobi orthogonal polynomials in the case of the
eigenvalue singular problem associated to the equation, (2) Refs. [12,13] are in perfect agreement, (3) in applications such
as mechanical vibrations of nonuniform beams of parabolic variation and both ends sharp, the boundary value problem re-
sults in an eigenvalue singular problem and the mode shape results in Jacobi polynomials. This paper can be very useful as
reference to researchers interested in eigenvalue singular problems.

2. Factorization of fourth-order differential equation [13]

Caruntu [13] showed that the fourth-order spectral type differential equation
1
ð1� xÞpð1þ xÞq

d2

dx2 ð1� xÞpþ2ð1þ xÞqþ2 d2y
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" #
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or in its extended form
1� x2� �2 d4y
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3y

dx3
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h i d2y
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where l is real and positive:
(1) Can be factorized as
b
d2

dx2 þ ðaþ b0Þ d
dx
� k1
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� b

d2

dx2 þ ðaþ b0Þ d
dx
� k2

" #
yðxÞ ¼ 0; ð3Þ
where a and b and are polynomial functions given by
bðxÞ ¼ 1� x2; aðxÞ ¼ �ðpþ qÞxþ q� p; p P 1 and q P 1; ð4Þ
and the constants k1, k2, and d2 satisfy the following equations
k1 þ k2 ¼ d2

k1 k2 ¼ �l
;

�
ð5Þ

d2 ¼
da
dx
þ d2b

dx2 : ð6Þ
Using Eqs. (4)–(6) these constants can be written as
k1 ¼
d2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 þ 4l
q

2
; k2 ¼

d2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 þ 4l
q

2
; ð7Þ

d2 ¼ �p� q� 2; ð8Þ
(2) Its general solution is found in terms of hypergeometric functions as follows
yðxÞ ¼ A1 � 2F1 a1; b1; c;
1� x

2

� �
þ A2 � 2F1 a2; b2; c;

1� x
2

� �
þ B1 �w a1; b1; c;

1� x
2

� �
þ B2 �w a2; b2; c;

1� x
2

� �
; ð9Þ
where A1;A2;B1;B2 are constants of integration, and ai; bi; c are the constant parameters of the canonical form of Gauss equa-
tions. Canonical Gauss equations [14] are given by
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zð1� zÞ d
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dz2 þ c � ðai þ bi þ 1Þz½ �dy
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� aibiz ¼ 0: ð10Þ
A variable change x ¼ 1� 2z is used to convert Eq. (3) to Eq. (10). Consequently, the constant parameters are as follows
c ¼ pþ 1;
ai þ bi ¼ pþ qþ 1;
ai bi ¼ ki:

8><
>: i ¼ 1;2; ð11Þ
The hypergeometric function 2F1ða; b; c; xÞ is given by
2F1ða; b; c; xÞ ¼ 1þ
X1
n¼1

ðaÞnðbÞn
ðcÞn

xn

n!
: ð12Þ
Function wða; b; c; xÞ is as follows [14]
wða; b; c; xÞ ¼ x1�c � 2F1ða� c þ 1; b� c þ 1;2� c ; xÞ; if c > 0; c noninteger; ð13Þ

wða; b; c; xÞ ¼ 2F1ða; b;1; xÞ ln xþ
X1
n¼1

ðaÞnðbÞn
ðn!Þ2

xnWða; b;n;0Þ; if jxj < 1; c ¼ 1; ð14Þ

wða; b; c; xÞ ¼ 2F1ða; b; c; xÞ ln xþ
X1
n¼1

ðaÞnðbÞn
ðn!ÞðcÞn

xnWða; b;n; c � 1Þ �
Xc�1

n¼1

ðn� 1Þ!ð1� cÞn
ð1� aÞnð1� bÞn

x�n; if c natural; ð15Þ
where
Wða; b;n;mÞ ¼ wðaþ nÞ � wðaÞ þ wðbþ nÞ � wðbÞ � wðmþ nþ 1Þ þ wðmþ 1Þ � wðnþ 1Þ þ wð1Þ: ð16Þ
Function w is the logarithmic derivative of C function [14]. The Pochhammer symbol or rising factorial ðaÞn is given by
ðaÞn ¼
Cðaþ nÞ

CðaÞ ¼ aðaþ 1Þ � � � ðaþ n� 1Þ ð17Þ
3. Eigenvalue singular problem

‘‘The eigenvalue problems associated to spectral type Eq. (1) can be either regular �1 < x1 6 x 6 x2 < 1, singular at one
end such as �1 < x1 6 x < 1, or singular at both ends �1 < x < 1. In the first two cases, eigenfunctions and eigenvalue equa-
tions are written in terms of hypergeometric functions [13]’’. In what follows, the third case, called hereafter eigenvalue sin-
gular problem, is reported. It is showed that in this case, the eigenfunctions are orthogonal polynomials. The eigenvalue
singular problem, �1 < x < 1, is given by Eq. (1) and the following boundary conditions
yð�1Þ; yð1Þ finite: ð18Þ
The eigenfunctions of this problem are showed to be Jacobi orthogonal polynomials, and their corresponding eigenvalues are
found. This is in good agreement with Ref. [12] where the same eigenvalues and eigenfunctions have been obtained by other
means.

3.1. Singular boundary conditions

Lemma 1. The solution of Eq. (1) for p P 1; q P 1, given by Eq. (9), is finite at x ¼ 1 if and only if the solution is given by
yðxÞ ¼ A1 � 2F1 a1; b1; c;
1� x

2

� �
þ A2 � 2F1 a2; b2; c;

1� x
2

� �
: ð19Þ
Proof. The solution given by Eq. (19) is finite at x = 1 and satisfies Eq. (1). h

If the general solution given by Eq. (9) is finite at x ¼ 1, it is showed by contradiction that it reduces to Eq. (19). Assume
B1 and B2 are not zero. Then the solution given by Eq. (9) is proved to not be finite at x ¼ 1, contradicting the assumption. The
proof consists of two cases: p > 1 and noninteger, and p = 1,2,3,4. . . In what follows, since the first two terms of Eq. (9) are
finite at x ¼ 1, only the last two terms including w½ai; bi; c; ð1� xÞ=2�; i ¼ 1;2 functions are to be discussed.

Case 1 (p > 1 and noninteger). In this case c is a noninteger, Eq. (11), and therefore w ai; bi; c; ð1� xÞ=2½ �; i ¼ 1;2 functions are
given by Eq. (13). The limit of the linear combination of terms three and four of Eq. (9) is therefore given by
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lim
x!1
a<1

P2
i¼1Bi � 2F1 ai � c þ 1; bi � c þ 1; 2� c; 1�x

2

� �
1�x

2

� �p : ð20Þ
This limit has to be finite. As the denominator approaches zero since p > 1, then a necessary condition is the limit of the
numerator to be zero as well. This leads to
B1 þ B2 ¼ 0: ð21Þ
Substituting Eq. (21) into Eq. (20), and using l’Hospital rule to find the limit, one obtains
lim
x!1
x<1

B1
P2

i¼1ð�1Þiþ1ðai � c þ 1Þðbi � c þ 1Þ � 2F1 ai � c þ 2; bi � c þ 2;3� c 1�x
2

� �
pð2� cÞ 1�x

2

� �p�1 : ð22Þ
As the denominator approaches zero since p > 1, for the limit to be finite, the limit of the numerator has to be zero as well,
which leads to a1b1 ¼ a2b2 (Eq. (11) is used), or in another form
k1 ¼ k2; which is false: ð23Þ
Eq. (23) contradicts Eq. (7), k1 and k2 cannot be equal. Therefore in this case the limit is not finite, which is in contradiction
with the condition that Eq. (9) is finite at x = 1.
Case 2 (p = 1,2,3, . . .). In this case c = 2,3,4, . . ., Eq. (11), so the w½ai; bi; c; ð1� xÞ=2�; i ¼ 1;2 functions are given by
Eq. (15). Then, the limit of the linear combination of the not finite terms of terms three and four of Eq. (9)
is given by
lim
x!1
x<1

P2
i¼1Bi � 2F1 ai; bi; c; 1�x

2

� �
1�x

2

� �p ln 1�x
2 �

Pp
n¼1

ðn�1Þ!ð1�cÞn
ð1�aiÞnð1�biÞn

1�x
2

� �p�n
h i

1�x
2

� �p : ð24Þ
As the denominator approaches zero, for the limit to be finite, a necessary condition is that the limit of the numerator is zero
as well, which leads to
B1

ð1� a1Þpð1� b1Þp
þ B2

ð1� a2Þpð1� b2Þp
¼ 0: ð25Þ
Substitute Eq. (25) into Eq. (24) and cancel a ð1� xÞ=2 factor. If p = 1 only the logarithm remains in the expression, so its
coefficient must be zero. However, for all p = 1,2,3, . . ., the limit of the resulting expression is finite only if Eq. (23) is satisfied.
This is a contradiction, just as in Case 1.

To conclude, the assumption that B1 and B2 are not zero is false. Therefore the solution is given by Eq. (19).
Lemma 2. If the solution given by Eq. (19) is finite at x ¼ �1, then it must be a polynomial.
Proof. If the general solution given by Eq. (19) is finite at x ¼ �1, then it is proved by contradiction that it reduces
to a polynomial. Assume that the solution yðxÞ given by Eq. (19) is not a polynomial but a series. As x approaches
�1, it is showed that the condition of yðxÞ being finite x ¼ �1 leads to a contradiction. Therefore the assumption
that yðxÞ is not a polynomial is false. To prove this, two cases are discussed: q > 1 and noninteger, and
q = 1,2,3, . . . h
Case 1 (q > 1 and noninteger). Using [14; 15.3.3], the limit of the solution given by Eq. (19) becomes
lim
x!�1
x>�1

P2
i¼1Ai � 2F1 c � ai; c � bi; c; 1�x

2

� �
1þx

2

� �q : ð26Þ
Since the limit has to be finite, and the limit of the denominator is zero, a necessary condition is that the limit of the numer-
ator is zero as well, which leads to
X2

i¼1

Ai � 2F1ðc � ai; c � bi; c ; 1Þ ¼ 0: ð27Þ
The hypergeometric series in Eq. (27) are convergent, since q > 1 and therefore Gauss’ theorem [14 15.1.20] is satisfied. Next,
using l’Hospital rule to find the limit of Eq. (26), one obtains
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lim
x!�1
x>�1

�
P2

i¼1Ai
ðc�aiÞ ðc�biÞ

c � 2F1 c � ai þ 1; c � bi þ 1; c þ 1 ; 1�x
2

� �
q 1þx

2

� �q�1 ð28Þ
Since q > 1 the denominator approaches zero. For the limit to be finite, the numerator has to approach zero as well, which
leads to the following equation
X2

i¼1

Aiðc � aiÞðc � biÞ � 2F1ðc � ai þ 1; c � bi þ 1; c þ 1; 1Þ ¼ 0: ð29Þ
The hypergeometric series in Eq. (29) are also convergent [14 15.1.20] since q > 1. The system of Eqs. (27) and (29) has a
nontrivial solution only if the determinant of the coefficient matrix is zero. After calculations, this leads to Eq. (23) which
is false.

Case 2 (q = 1,2,3,4,. . .). From Eq. (11), it results
c ¼ ai þ bi � q: ð30Þ
Using [14; 15.3.12 for m = q integer] the limit of the solution given by Eq. (19) can be written as
lim
x!�1
x>�1

1þ x
2

� ��qX2

i¼1

Ai �
CðqÞCðaiþbi�qÞ

CðaiÞCðbiÞ
Xq�1

n¼0

ðai�qÞnðbi�qÞn
n!ð1�qÞn

1þ x
2

� �n

�ð�1ÞqCðaiþbi�1Þ
Cðai�1ÞCðbi�1Þ

X1
n¼0

ðaiÞnðbiÞn
n!ðnþqÞ!

1þ x
2

� �nþq

�
(

ln
1þ x

2
�wðnþ1Þ�wðnþqþ1ÞþwðaiþnÞþwðbiþnÞ

� 	

ð31Þ
As the limit has to be finite, and the limit of the denominator is zero, necessarily the limit of the numerator has to be zero
as well, which leads to
A1
CðqÞCða1 þ b1 � qÞ

Cða1ÞCðb1Þ
þ A2

CðqÞCða2 þ b2 � qÞ
Cða2ÞCðb2Þ

¼ 0: ð32Þ
Use Eq. (11), substitute Eq. (32) into Eq. (31), and cancel a ð1þ xÞ=2 factor. The limit of the numerator of the resulting expres-
sion has to be zero, which after calculations leads to Eq. (23) which is false.

To conclude, the assumption that the solution given by Eq. (19) is not a polynomial is false. Therefore the solution given
by Eq. (19) must be a polynomial to ensure convergence for q P 1.

3.2. Eigenvalues and eigenfunctions

Proposition. Consider the eigenvalue singular problem given by Eq. (1) with l positive and p P 1; q P 1, and
yð�1Þ; yð1Þ finite: ð33Þ
This eigenvalue singular problem has the following eigenvalues
ln ¼ nðnþ pþ qþ 1Þðn� 1Þðnþ pþ qþ 2Þ; ð34Þ
and eigenfunctions
ynðxÞ ¼ Pðp;qÞn ðxÞ; ð35Þ
where Pðp;qÞn ðxÞ are Jacobi orthogonal polynomials [14].
Proof. The general solution of Eq. (1) is given in terms of hypergeometric functions by Eq. (9). The boundary condition
yð1Þ finite is satisfied if and only if the general solution reduces to Eq. (19), Lemma 1. The boundary condition
yð�1Þ finite is satisfied if and only if Eq. (19) reduces to a polynomial, Lemma 2. The hypergeometric series of Eq. (19)
reduce to polynomials if and only if the parameters a1; a2 (or b1; b2) are negative integers. This way both series
2F1ðai; bi; ci; 1Þ i ¼ 1;2 are finite, see Eq. (17). h

Next, it is showed by contradiction that only one of the parameters a1; a2 can be a negative integer. Assume that both
a1; a2 are negative integers.
a1 ¼ �m; a2 ¼ �n m;n natural: ð36Þ
Therefore 2F1ðai; bi; ci; 1Þ; i ¼ 1;2, become finite sums, Eq. (17), therefore convergent. Using Eqs. (36) and (11), one obtains
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b1 ¼ mþ pþ qþ 1; b2 ¼ nþ pþ qþ 1; ð37Þ
and
k1 ¼ �mðmþ pþ qþ 1Þ; k2 ¼ �nðnþ pþ qþ 1Þ: ð38Þ
Because m and n are natural numbers, and p and q are positive, from Eq. (38) it results that
k1 < 0; k2 < 0; ð39Þ
which contradicts Eq. (7); not both k1; k2 can be negative. Therefore, the assumption that both a1; a2 are negative integers, Eq.
(36), is false. Consequently, only one of them can be a negative integer, say a2. As a1 is a positive integer, its series
2F1ða1; b1; c1; 1Þ is divergent. Since yð�1Þ is finite, the coefficient A1 of this series in Eq. (19) must be zero
A1 ¼ 0: ð40Þ
Therefore, the solution of the eigenvalue singular problem given by Eqs. (1) and (33) is given by
ynðxÞ ¼ A � 2F1 �n;nþ pþ qþ 1;pþ 1;
1� x

2

� �
; ð41Þ
as resulting from Eqs. (19) and (40), and a2 ¼ �n. The eigenfunctions ynðxÞ given by Eq. (41) are Jacobi polynomials [15], and
the corresponding k2n eigenvalues are given by Eq. (38). Thus the eigenfunctions of the eigenvalue singular problem given by
Eqs. (1) and (33) are as follows
ynðxÞ ¼ A � Pðp;qÞn ðxÞ ð42Þ
The corresponding eigenvalues result from Eqs. (7), (8), and (38) as
ln ¼ nðnþ pþ qþ 1Þðn� 1Þðnþ pþ qþ 2Þ: ð43Þ
This shows that from the general solution expressed in terms of hypergeometric functions, the eigenfunctions of the eigen-
value singular problem result as Jacobi polynomials. The eigenfunctions given by Eq. (42) and the eigenvalues given by Eq.
(43) are in agreement with data published in the literature. For the particular case given by Eq. (4), the eigenvalues given by
Eq. (49) from Ref. [12] become the eigenvalues given by Eq. (43), and the orthogonal polynomials from Ref. [12] become Ja-
cobi polynomials as in Eq. (42).

4. Application: free bending vibrations of nonuniform beams

The beams considered in this section have circular cross-section, parabolic radius variation with the longitudinal coordi-
nate, and both ends sharp. The boundary conditions have to be free–free since the ends are sharp and consequently cannot
sustain any bending moment or shear force. Natural frequencies and mode shapes of transverse vibrations are to be found.

4.1. Equation of transverse vibrations of beams of parabolic radius variation

The dimensionless differential equation of transverse vibrations of Euler–Bernoulli beams is [12]
d2

dx2 IðxÞd
2yðxÞ
dx2

" #
� q0‘

4x2

E
AðxÞyðxÞ ¼ 0; ð44Þ
where x is the dimensionless longitudinal coordinate of the beam, taken as the dimensional longitudinal coordinate divided
by ‘ which is a reference length. The mode shape of vibration is yðxÞ, Young modulus E, cross-section moment of inertia IðxÞ,
cross-section area AðxÞ, density q0, and frequency x. Consider beam of circular cross-section of length 2‘ whose radius is
given by
RðxÞ ¼ R0ð1� x2Þ � 1 < x < 1; ð45Þ
where R0 is the reference radius. Thus the area AðxÞ and the moment of inertia IðxÞ of the current cross-section are
AðxÞ ¼ A0ð1� x2Þ2 IðxÞ ¼ I0ð1� x2Þ4, where A0 and I0 are the reference corresponding cross-section quantities
A0 ¼ pR2

0 I0 ¼ pR4
0=4. Substituting into Eq. (44), the following differential equation of motion results as
1

ð1� x2Þ2
d2

dx2 ð1� x2Þ4 d2yðxÞ
dx2

" #
� l � yðxÞ ¼ 0; l ¼ q0A0‘

4

EI0
x2: ð46Þ
4.2. General solution using factorization method [13]

Comparing Eqs. (1) and (46) it results
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p ¼ 2; q ¼ 2: ð47Þ
According to Eqs. (1), (3), (4), (7), and (8), the fourth order differential Eq. (46) can be factorized and its solution can be found
solving two second order differential equations given by
1� x2
� � d2yðxÞ

dx2 � 4x
dyðxÞ

dx
þ 2þ ð�1Þi

ffiffiffiffiffiffiffiffiffiffiffiffi
4þ l

p
yðxÞ ¼ 0; i ¼ 1;2: ð48Þ
Therefore, the general solution of Eq. (46) is given by Eq. (9) for
ai ¼
5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� 4ki
p

2
; bi ¼

5�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25� 4ki
p

2
i ¼ 1;2 ð49Þ
where ki are found from Eqs. (7), (8) and (47).

4.3. Natural frequencies and mode shapes of beam sharp at both ends

The free-free boundary conditions of the beam are the conditions of zero bending moment M and zero shear force T at the
ends as follows
Mð�1Þ ¼ Mð1Þ ¼ Tð�1Þ ¼ Tð1Þ ¼ 0: ð50Þ
Caruntu [10] showed that for beams sharp at both ends the boundary conditions (42) reduce to conditions of finite displace-
ments of the free sharp ends Eq. (33). Consequently, the boundary value problem given by Eqs. (46) and (33) is an eigenvalue
singular problem given by the proposition. According to Eqs. (34) and (35) of the proposition, the eigenfunctions ynðxÞ and
eigenvalues ln are given by
ynðxÞ ¼ Pð2;2Þn ðxÞ; ð51Þ

ln ¼ nðn� 1Þðnþ 5Þðnþ 6Þ: ð52Þ
Consequently, from Eqs. (51) and (52) where n has been shifted to (n + 1) at the right hand sides, the eigenfrequencies (nat-
ural frequencies xn) and the mode shapes YnðxÞ of the beam are given by
YnðxÞ ¼ Pð2;2Þnþ1 ðxÞ; ð53Þ

xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þðnþ 6Þðnþ 7Þ

p ffiffiffiffiffiffiffiffiffiffiffi
EI0

q0A0

s
: ð54Þ
This shifting allows for the natural frequencies and the mode shapes of the beam to be given starting from n = 1.

5. Discussion and conclusion

In this paper, the perfect agreement between Refs. [12,13] is proved. It is showed that the hypergeometric series solutions
reported in [13] reduce to classical Jacobi orthogonal polynomials reported in Ref. [12] for the associated eigenvalue singular
problems. Moreover, a mechanical engineering example of transverse vibration of nonuniform beams (1) illustrates how dy-
namic modal characteristics (modes of vibration) for beams sharp at both ends can be found from its general solution ob-
tained by factorization method, and (2) shows the same results as Ref. [12].
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