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A B S T R A C T

This paper investigates the amplitude–frequency response of parametric resonance of a clamped elastic circular
plate microelectromechanical system (MEMS) resonator above a parallel ground plate and under electrostatic
actuation. Soft AC voltage with frequency near the first natural frequency of the plate is used. This results
into parametric resonance. The system is assumed to be weakly nonlinear. Numerical and analytical methods
are used to solve the reduced order models of the electrostatically actuated MEMS circular plate resonators in
order to obtain the amplitude–frequency response of their parametric resonance. Seven Reduced Order Models
(ROM) with one to seven modes of vibration (terms) have been developed and used in this investigation. ROM
with one mode of vibration was solved using the Method of Multiple Scales (MMS) and predicted the existence
of the resonance. ROMs with two to seven modes of vibration were solved using continuation and bifurcation
software AUTO 07p to simulate and predict the amplitude–frequency response. These simulations showed
that increasing the number of modes of vibration in the ROM produced better results. However, there is no
significant difference between six and seven modes of vibration ROMs. Therefore, the ROM using seven modes
of vibration was used in this research. This ROM was also numerically integrated to predict time responses of
the MEMS plate. All methods showed an excellent agreement for amplitudes less than 0.5 of the gap. Only ROM
using seven modes of vibrations had accurate predictions for all amplitudes, i.e. amplitudes between zero and
the gap distance. The frequency response consists of two bifurcations, subcritical and supercritical. The effects
of AC voltage and damping on the amplitude–frequency response are reported. Increasing the AC voltage
results in shifting of the bifurcations to lower frequencies, subcritical significantly more than supercritical.
Increasing the damping results in a narrower frequency range between the bifurcations.
. Introduction

Micro-Electromechanical Systems (MEMS) are attractive for many
pplications. Such applications include MEMS resonator sensors for
easurement of density and viscosity [1–3], voltage detection [4],

apacitive detection of large amplitudes of motion [5], and microbal-
nces [6]. Resonator sensors are based on the change of resonance
requency due to the change of environmental properties or mass
ddition to the system. Capacitive detection is based on the change in
istance between plates that causes changes in the capacitance, and can
e measured as electrical signal [7].

Electrostatically actuated MEMS are excellent candidates in many
pplications due to their simple design and accurate control [8]. Such
EMS devices consist of an elastic plate (or beam) held above a parallel

igid ground plate (electrode). When a Direct Current (DC) voltage is
pplied between the two plates, an electrostatic force causes the elastic
late to deform towards the ground plate. When an Alternating Current
AC) voltage is applied between the two plates, the electrostatic force

∗ Corresponding author.
E-mail addresses: dumitru.caruntu@utrgv.edu, caruntud2@asme-member.org (D.I. Caruntu).

causes the elastic plate to vibrate. Electrostatic forces and damping
forces [9–11] act on the vibrating plate. The vibration of the plate
can be controlled by varying the AC voltage and frequency [12].
The electrostatic force is nonlinear being inversely proportional to the
square of the gap distance between plates. A ‘pull-in’ phenomenon,
i.e. the deformable plate collapsing onto the ground plate [7,8,13–
15], is encountered in such devices. Pull-in instability occurs when
the electrostatic force overcomes the elastic restoring force within the
plate. The pull-in voltage or collapse voltage [7,14,16] is also known
as critical voltage. In some applications, such as micro-switches, pull-in
may be desired [13]. In others, tuning the AC frequency and voltage can
improve the life expectancy of the device by avoiding pull-in [17,18].
Clamped circular plates, as any other continuous system, have an
infinite number of modes of vibration, i.e. mode shapes and their cor-
responding natural frequencies [16,19–21]. The axisymmetrical modes
of vibration depend only on the radial coordinate and not the angular
one. In the first axisymmetrical mode of vibration, the entire profile
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of the plate deflects in the same direction with the center having the
largest deflection while the outer edge has none. A recent review on
statics and dynamics of electrically actuated nano and micro structures
has been reported in the literature, Khaniki et al. [22]. Also, the
same group of researchers reported an investigations on nonlinear size-
dependent behavior of electrically actuated MEMS resonators based on
the modified couple stress theory [23].

Parametric resonances of micro-structures, such as amplitude–
frequency [24–26] and amplitude–voltage [27,28] responses of elec-
trostatically actuated MEMS cantilevers, have been reported in the
literature. MEMS behavior has been investigated using different meth-
ods. The shooting method, with the applied voltage being an unknown
constant function, has been used [12] to facilitate computation to
model a clamped circular plate; the results matched experimental data.
The Reduced Order Model (ROM) method has been used to transform
the partial differential equations of motion into ordinary equations [25,
29,30]. The resulting ordinary equations have been solved using the
Method of Multiple Scales (MMS) [18], Homotopy Perturbation Method
(HPM) [29], or numerical integration [26,31,32].

Investigations on electrostatically actuated MEMS circular plates
have been reported in the literature as follows. The static pull-in phe-
nomenon of electrostatically actuated (through a DC voltage) circular
micropumps, used in drug delivery systems, has been investigated [32].
Micropump’s circular plate has been modeled as a Kirchhoff thin plate.
The effects of radius, thickness and initial gap of the micropump
on the pull-in voltage have been reported. Von Kármán’s nonlinear
bending theory of thin plates has been used in this work. Free vibration
and static pull-in instability of pre-stressed electrostatically actuated
circular microplates to include Casimir force have been reported [33].
The pull-in parameters have been obtained for static deformation of the
plate by using the shooting method. Small amplitude free vibrations
about the pre-deformed bending configuration have been investigated
as well. The effects of the initial gap–thickness ratio, Casimir force,
and pre-stress on the pull-in instability and the natural frequency
have been reported. An approximate analytical solution of the static
deflection of electrostatically actuated thin clamped circular plate has
been presented in Ref. [34]. The classical thin-plate theory, valid for
adequate large diameter to thickness ratios, situation commonly pre-
dominant in MEMS devices, has been used. Galerkin-weighted residual
technique has been used under the assumption of small deflections
when compared to plate’s thickness. The pull-in voltages predicted by
the model and ANSYS simulation have been in agreement. Actuation
of microplates by fringing electrostatic fields, i.e., field lines between
plates and the sidewalls supporting them, has been investigated [35].
This type of actuation is beneficial for operations in open air envi-
ronment. An analytical model of this actuation principle has been
developed and validated numerically using finite element simulations.
Due to the absence of small gaps, the device is not disposed to pull-
in instability and stiction, and it was not subjected to squeeze-film
damping. Humidity and/or dust cannot cause failure. Flow sensors
in which a smooth surface is important are excellent applications of
this device. Nonlinear resonant behavior of electrostatically actuated
micropump circular elastic diaphragms, as they interact with inviscid
liquids inside a cylindrical chamber with a central discharge, has been
reported in the literature [36]. The partial differential equation of
motion includes the nonlinear electrostatic force and the fluid pressure
on the diaphragm. MMS has been used to obtain an approximate
analytical solution. The system exhibited a softening behavior with DC
increase, discharge diameter decrease, and chamber height decrease.
Also, electrical and inertial properties of the operating fluid changed
the resonant curves significantly.

In this research, the frequency–amplitude response of parametric
resonance of electrostatically actuated MEMS clamped circular plates
is investigated. The case of axisymmetrical vibrations of plates, which
can be used as resonator sensing mechanism, is the focus of this work.
The quantum dynamics effects such as Casimir or van der Waals forces
 a

2

are not included. The quantum dynamic effects are significant for gaps
lower than 1 μm. Due to the nature of electrostatic actuation, using an
AC frequency near natural frequency of the circular plate leads to para-
metric resonance. First, the partial differential equation of motion is
transformed into an ordinary differential equation by using ROM with
one term (mode of vibration). Then the ordinary differential equation
is integrated using MMS. Second, the partial differential equation of
motion is transformed into a system of coupled ordinary differential
equations by using ROM with two, three, four, five, six, or seven modes
of vibration (or terms). Then the system of the ordinary differential
equations is solved numerically using the software package Matlab in
order to obtain time responses of the MEMS plate. Also, the system of
the ordinary differential equations is solved using AUTO 07P [37], a
software package for continuation and bifurcation problems, in order
to obtain the frequency–amplitude response.

The motive behind this work is the potential of electrostatically
actuated MEMS clamped circular plates to be used as resonator sensors.
Parametric resonance constitutes an excellent mechanism for sensing.
The sudden jump from a stable zero-amplitude steady-state to large
amplitudes up to 0.9 of the gap makes out of the plate resonator an
accurate instrument for detecting/sensing biological structures. Bacte-
ria and viruses, which have sizes in the order of micro- and nano-meters
are biological structures of interest.

To the best of our knowledge, this is the first time when (1)
the amplitude–frequency response of parametric resonance of electro-
statically actuated MEMS circular plates is reported, (2) using MMS,
numerical integration of ROM with 7 terms using Matlab for time
responses, and AUTO 07P. (3) The results of both methods MMS and
ROM with 7 terms are in perfect agreement for amplitudes less than
0.5 of the gap, but (5) have significant differences in amplitudes larger
than 0.5 of the gap and the gap (pull-in). (6) ROM with 7 terms predicts
the instability in high amplitudes (relative to the gap) of the plate, and
(7) also predicts a larger interval of frequencies for which the plate
can experience pull-in phenomenon if large initial amplitudes. (8) It is
shown that the amplitude–frequency interval between the bifurcations
of the frequency response increases with the increase of dimensionless
voltage and decreases with the increase of the dimensionless damping.

2. Differential equation of motion

The MEMS system under investigation consists of an elastic circular
plate, clamped around its outer edge and above a parallel and rigid
ground plate (electrode), Fig. 1. The dimensionless equation of axisym-
metric vibrations of clamped circular plates, Kirchhoff theory, under
electrostatic actuation [16,18,38] is given by

⎧

⎪

⎨

⎪

⎩

𝜕2𝑢
𝜕𝑡2

+ 𝜇 𝜕𝑢
𝜕𝑡

+ 𝜕4𝑢
𝜕𝑟4

+ 2
𝑟
𝜕3𝑢
𝜕𝑟3

− 1
𝑟2

𝜕2𝑢
𝜕𝑟2

+ 1
𝑟3

𝜕𝑢
𝜕𝑟

= 𝛿 cos2 𝛺∗𝑡
(1 − 𝑢)2

𝑢 (𝑅, 𝑡) = 𝜕𝑢
𝜕𝑟

(𝑅, 𝑡) = 0
(1)

where the dimensionless variables are 𝑢 (𝑟, 𝑡) the dimensionless deflec-
tion of current point on the plate, r dimensionless distance from the
current point on the plate to the center of the plate, t dimensionless
time. The dimensionless parameters are 𝜇 the dimensionless damping
parameter, 𝛿 dimensionless voltage or excitation force parameter, and
𝛺∗ the dimensionless AC frequency. These dimensionless variables and
parameters, as well as the flexural rigidity D of the plate, are given
by [18]

𝑢 = �̂�
𝑑
, 𝑟 = �̂�

𝑅
, 𝑡 = 𝑡

√

𝐷
𝜌ℎ𝑅4

(2)

𝜇 = 2𝑐1

√

𝑅4

𝜌ℎ𝐷
, 𝛿 =

𝑅4𝜀∗𝑉 2
0

2𝐷𝑑3
, 𝛺∗ = 𝛺

√

𝜌ℎ𝑅4

𝐷
, 𝐷 = 𝐸ℎ3

12
(

1 − 𝜈2
) (3)

where the hat variables in Eq. (2) are the corresponding dimensional
variables, R is the outer radius of the elastic uniform circular plate, d
he gap between the elastic plate and the ground plate, h the thickness
f the elastic plate; and 𝜀∗, 𝐸, 𝜈, 𝑐1, 𝑉0 are free space permittivity,
oung modulus, Poisson ratio, damping coefficient, and AC voltage
mplitude, respectively.
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Fig. 1. Uniform flexible MEMS clamped circular plate of radius R and thickness h
uspended with a gap d above ground plate.

. Method of multiple scales

The Method of Multiple Scales (MMS) is an analytical perturba-
ion method that is used in this work to investigate the amplitude–
requency response of the electrostatically actuated MEMS clamped
ircular plates. MMS is valid only under the assumption that the
ystem is weakly nonlinear and undergoes small deflections. Two time
cales [16] are considered in this work, namely fast scale 𝑇0 = 𝑡 and
low scale 𝑇1 = 𝜀𝑡, where 𝜀 is a small bookkeeping parameter. MMS
ransforms the nonlinear partial differential equation describing the
otion of the system into a number of linear ordinary differential

quations equal to the number of time scales. In order to use MMS, the
lectrostatic force in Eq. (1) is expanded in Taylor series. Only terms up
o cubic power of the expansion are retained. The dimensionless partial
ifferential equation of motion becomes

𝜕2𝑢
𝜕𝑡2

+ 𝜀𝜇 𝜕𝑢
𝜕𝑡

+ 𝑃 [𝑢] = 𝜀𝛿(1 + 2𝑢 + 3𝑢2 + 4𝑢3) cos2 𝛺∗𝑡 (4)

here the operator P is given by

= 𝜕4

𝜕𝑟4
+ 2

𝑟
𝜕3

𝜕𝑟3
− 1

𝑟2
𝜕2

𝜕𝑟2
+ 1

𝑟3
𝜕
𝜕𝑟

(5)

The bookkeeping parameter 𝜀 [39,40] is used to scale the small nonlin-
ear terms and small damping. The solution u of Eq. (4) that is assumed
o be a uniform first order expansion [41] and the time derivative in
erms of the time scales are given by

= 𝑢0 + 𝜀𝑢1 , 𝜕
𝜕𝑡

= 𝐷0 + 𝜀𝐷1 𝐷0 =
𝜕
𝜕𝑇0

, 𝐷1 =
𝜕
𝜕𝑇1

(6)

ubstituting Eqs. (6) into Eq. (4), expanding the resulting equation, and
ollecting the 𝜀0 and 𝜀1 terms, two problems, namely zero-order and
irst-order, result as follows
0 ∶𝐷2

0𝑢0 + 𝑃 [𝑢0] = 0 (7)
𝜀1 ∶𝐷0𝑢1 + 𝑃 [𝑢1] = −2𝐷0𝐷1𝑢0 − 𝜇𝐷0𝑢0

+ 𝛿
(

1 + 2𝑢0 + 3𝑢20 + 4𝑢30
)

cos2 𝛺∗𝑇0 (8)

he boundary value problem associated to Eq. (7) gives the solution
0 [16,18,20,21] as

0 = 𝜑𝑘(𝑟)
[

𝐴𝑘(𝑇1)𝑒𝑖𝜔𝑘𝑇0 + 𝐴𝑘(𝑇1)𝑒−𝑖𝜔𝑘𝑇0
]

(9)

where 𝜑𝑘 is the 𝑘th mode shape of vibration and 𝜔𝑘 its corresponding
natural frequency [16]. The complex amplitudes 𝐴𝑘(𝑇1) and its conju-
gate 𝐴𝑘(𝑇1) are to be determined. The mode shapes 𝜑𝑘 are orthonormal,
.e. ∫ 1

0 𝑟𝜑𝑛(𝑟)𝜑𝑚(𝑟)𝑑𝑟 = 𝛿𝑛𝑚, where 𝛿𝑛𝑚 is the Kronecker delta, [41]. In
his work, the AC frequency 𝛺∗ is near natural frequency 𝜔𝑘, and it is
iven by
∗ = 𝜔 + 𝜀𝜎 (10)
𝑘

3

here 𝜎 is the detuning frequency. One can notice that although the AC
requency is near natural frequency Eq. (10), the excitation frequency
f the electrostatic force, which is proportional to the square of the
oltage, has a frequency twice the AC frequency. Therefore the MEMS
esonator experiences a parametric resonance. In order to solve Eq. (8)
or 𝑢1, the solution 𝑢0 given by Eq. (9) is substituted into Eq. (8).
ne can notice that only one mode of vibration, i.e the 𝑘th mode
f vibration, is used. Expanding the resulting equation, collecting the
ecular terms (terms having 𝑒𝑖𝜔𝑘𝑇0 ), and set the sum equal to zero gives
he following equation

− 2𝜑𝑘𝐴
′
𝑘𝑖𝜔𝑘 − 𝑖𝜇𝜑𝑘𝜔𝑘𝐴𝑘 +

1
2
𝛿𝜑𝑘𝐴𝑘𝑒

2𝑖𝜎𝑇1 + 𝛿𝜑𝑘𝐴𝑘

+ 𝛿𝜑3
𝑘𝐴

3
𝑘𝑒

−2𝑖𝜎𝑇1 + 3𝛿𝜑3
𝑘𝐴𝑘𝐴

2
𝑘𝑒

2𝑖𝜎𝑇1 + 6𝛿𝜑3
𝑘𝐴

2
𝑘𝐴𝑘 = 0 (11)

here 𝐴′
𝑘 = 𝑑𝐴𝑘∕𝑑𝑇1, i.e. the rate of change of 𝐴𝑘 with respect to the

low scale 𝑇1. Substituting the polar form of the complex coefficients
𝑘 = 𝑎𝑘𝑒𝑖𝜃𝑘∕2 and 𝐴𝑘 = 𝑎𝑘𝑒−𝑖𝜃𝑘∕2, where 𝑎𝑘 and 𝜃𝑘 are the real

amplitude and phase, respectively, into Eq. (11), the Galerkin method
is then used by multiplying the resulting equation by r and 𝜑𝑘(𝑟) and
integrating from 0 to 1. The imaginary and real parts of the resulting
equation are separated into two equations used afterwards to obtain
the amplitude–frequency

(

𝑎𝑘, 𝜎
)

slow scale differential equations. The
steady-state solutions, which require no change with respect to the slow
scale 𝑇1, are found using 𝑎′𝑘 = 𝛾 ′𝑘 = 0, where 𝛾𝑘 = 𝜎𝑇1 − 𝜃𝑘, [16].
The amplitude–frequency response consists of steady-state amplitudes
𝑎𝑘 = 0 for all considered 𝜎, and non-zero steady-state amplitudes given
by

𝑎𝑘 =

√

2𝜇𝜔𝑘𝑔2𝑘
𝛿𝑔4𝑘 sin 2𝛾𝑘

−
𝑔2𝑘
𝑔4𝑘

(12)

𝜎 = − 1
4𝜔𝑘

[

(

2 + cos 2𝛾𝑘
)

𝛿 +
𝑔4𝑘
𝑔2𝑘

(

2𝛿 cos 2𝛾𝑘 + 3𝛿
)

𝑎2𝑘

]

(13)

where

𝑔𝑖𝑘 = ∫

1

0
𝑟𝜑𝑖

𝑘(𝑟)𝑑𝑟 (14)

In the numerical simulations to follow, 𝑘 = 1, i.e. the AC frequency is
near the first natural frequency.

4. Reduced order models

Reduced Order Models (ROMs) to include several modes of vibra-
tion consist of systems of ordinary differential equations. ROM’s system
of ordinary differential equations is (1) numerically integrated [42] to
predict time responses of the MEMS resonator, and (2) solved using
the continuation and bifurcation method to predict the amplitude–
frequency response. ROMs are not limited to the assumption of weak
nonlinearities. Therefore, ROMs can be used to accurately predict the
response for both low and high amplitude vibrations. ROMs using a
larger number of modes of vibration give better predictions in high
amplitudes of the pull-in instabilities and steady-states amplitudes. The
deflection at any point of the circular plate, Eq. (1), can be described
by [18]

𝑢(𝑟, 𝑡) =
𝑁
∑

𝑖=1
𝑢𝑖(𝑡)𝜑𝑖(𝑟) (15)

where the number of modes of vibration (terms) N of the ROM is finite,
and the dimensionless displacement 𝑢(𝑟, 𝑡) is a function of the mode
shapes 𝜑𝑖(𝑟) [18]. Time-dependent functions 𝑢𝑖(𝑡) are to be determined
through numerical integration of the system of differential equations
describing the motion of the plate. The partial differential equation
of motion Eq. (1) is multiplied by (1 − 𝑢)2 in order to eliminate all
denominators and reduce the computational cost [16,43]. Replacing

Eq. (15) into the resulting equation, and then multiplying the resulting
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Table 1
First seven natural frequencies for clamped circular plate.

𝑁 = 1 𝑁 = 2 𝑁 = 3 𝑁 = 4 𝑁 = 5 𝑁 = 6 𝑁 = 7

𝜔𝑘 10.216 39.771 89.104 158.183 247.005 355.568 483.872

Table 2
Dimensional system parameters.

Radius of plate R 250.0 μm
Initial gap distance d 1.014 μm
Plate thickness h 3.01 μm
Permittivity of free space 𝜀* 8.854e−12 C2/N/m2

Young’s modulus E 150.6 GPa
Poisson’s ratio 𝜈 0.0436
Density of material 𝜌 2330.0 kg/m3

Damping 𝑐1 1.962 Ns/ m3

Voltage 𝑉0 2.035 V

equation by r and 𝜑𝑘(𝑟) and integrating from 0 to 1 (Galerkin method),
the following system of 𝑁 differential equations, 𝑛 = 1, 2,… , 𝑁 , result
𝑁
∑

𝑖=1
𝐴𝑛𝑖

𝜕2𝑢𝑖
𝜕𝑡2

= −𝜇
𝑁
∑

𝑖=1
𝐴𝑛𝑖

𝜕𝑢𝑖
𝜕𝑡

−
𝑁
∑

𝑖=1
𝐴𝑛𝑖𝜔

2
𝑖 𝑢𝑖 + 𝛿ℎ𝑛 cos2 𝛺∗𝑡 (16)

here 𝐴𝑛𝑖 =
∑𝑁

𝑗𝑘 ℎ𝑛𝑖𝑗𝑘𝑢𝑗𝑢𝑘 − 2
∑𝑁

𝑗 ℎ𝑛𝑖𝑗𝑢𝑗 + ℎ𝑛𝑖
nd

𝑛 = ∫

1

0
𝑟𝜑𝑛𝑑𝑧, ℎ𝑛𝑖 = ∫

1

0
𝑟𝜑𝑛𝜑𝑖𝑑𝑧,

𝑛𝑖𝑗 = ∫

1

0
𝑟𝜑𝑛𝜑𝑖𝜑𝑗𝑑𝑧, ℎ𝑛𝑖𝑗𝑘 = ∫

1

0
𝑟𝜑𝑛𝜑𝑖𝜑𝑗𝜑𝑘𝑑𝑧

(17)

his work investigates the amplitude–frequency response of the circular
late for AC frequency near natural frequency of the plate. Therefore,
he excitation frequency 𝛺∗ used in ROMs is given by Eq. (10) for
= 1. The resulting system of N second order differential Eqs. (16)

s transformed into a system of 2𝑁 first order differential equations.
his system is then solved using AUTO 07 for 𝑁 = 2, 3, 4, 5, 6, 7 number
f modes (terms) in order to investigate the convergence of ROMs
mplitude–frequency responses. AUTO 07 is a software package for
ontinuation and bifurcation problems [36]. Moreover, the behavior
f the system is also tested finding time responses by direct integra-
ion of ROMs using Matlab. Specifically, the system of 2N first-order
ifferential equations is integrated in order to predict the steady-
tate amplitudes of the center of the MEMS circular plate resonator.
he amplitude–frequency response is necessary for understanding the
elationship between the steady-state amplitudes of vibration and the
pplied excitation frequencies. The effects of voltage and damping pa-
ameters on the amplitude–frequency response are reported. Numerical
esults from MMS, ROM using AUTO 07, and ROM using Matlab, are
ompared in the next section.

. Numerical simulations

Numerical simulations are conducted for predicting the amplitude–
requency response of electrostatically actuated MEMS circular plate
esonators. They are conducted for typical MEMS circular plate res-
nators in rarefied gas. First seven dimensionless natural frequencies
f axisymmetric vibrations of clamped uniform circular plates are given
n Table 1. The dimensionless natural frequencies resulted from solving
he frequency equation of clamped circular plates [16]. The dimensions
nd constants of a typical electrostatically actuated MEMS circular plate
esonator, with negligible Casimir forces [44] as the gap distance is
arger than 1 μm, are given in Table 2. Poisson ratio of silicon is also
ncluded [45]. Using Table 2, the dimensionless parameters 𝛿 and 𝜇 are
alculated and given in Table 3.

The amplitude–frequency response of electrostatically actuated cla-
ped circular plates, with AC frequency near first natural frequency,
= 1 in Eqs. (9), (10), (12), (13), of the plate, is analytically and
4

Table 3
Dimensionless system parameters.

Electrostatic constant 𝛿 0.200
Damping constant 𝜇 0.005

Fig. 2. Frequency response of clamped circular plate excited near natural frequency
using MMS and 7T ROM AUTO. 𝛿 = 0.2, 𝜇 = 0.005.

umerically predicted, Fig. 2. The frequency of actuation is twice
he AC frequency since the force of excitation is proportional to 𝑉 2,
herefore the resonance experienced by the MEMS plate is parametric
esonance. Phase–frequency response [46] is not included in this work.
he coefficients given by Eq. (12), (13) and used in these simulations
re 𝑔11 = 0.5155, 𝑔21 = 1.0005, 𝑔31 = 2.3381, 𝑔41 = 5.9763. (1) MMS
sing Eq. (12), (13) for amplitude–frequency response, (2) ROM of
even modes of vibration (7T), 𝑁 = 7 in Eqs. (16), using AUTO 07
or amplitude–frequency response, and (3) ROM of seven modes of
ibration (7T) using Matlab to numerically integrate and predict time
esponses, are used to predict amplitude–frequency response of the
arametric resonance.

Fig. 2 shows the amplitude–frequency response of the parametric
esonance of electrostatically actuated MEMS circular plates using MMS
nd seven modes (7T) ROM AUTO 07. This response consists of steady-
tate solutions of the MEMS plate resonator vibrating motion, i.e. the
imensionless steady-state amplitude of the center of the MEMS plate
max versus the dimensionless detuning frequency of actuation 𝜎. The

teady-state solutions are either stable or unstable. The stable solutions
re represented by solid lines, and unstable solutions by dash lines.
wo bifurcations, subcritical and supercritical, specific to parametric
esonance occur. Points A and B are bifurcation points, i.e. points where
he stability changes. Point A is the bifurcation point of the subcritical
ifurcation which consists of zero steady-state solutions branch that is
table for frequencies less than the frequency of point A and unstable
or larger frequencies, and unstable branch AC. One can notice that C
s the end point in high amplitudes of the unstable branch AC. Point B
s the bifurcation point of the supercritical bifurcation which consists of
ero steady-state solutions branch that is unstable for frequencies less
han the frequency of B and stable for larger frequencies, and stable
ranch BD. It can be seen that D is the end point in high amplitudes of
ranch BD. Zero steady-state amplitudes occur at all frequencies under
nvestigation, Fig. 2, and they are unstable between the bifurcation
oints A and B, and stable elsewhere within the investigated range of

frequencies. The bending of the stable and unstable non-zero steady-
state amplitude branches BD and AC to the left (lower frequencies)
shows that the system experiences a softening effect. So, for stable
steady-state amplitude branch, one can see that the physics of this is
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the phenomenon in which the frequency of vibration decreases with
the increase in amplitude.

A comparison between the three methods used (1) MMS of ROM
using one mode of vibration, (2) ROM using seven modes of vibration
solved using the continuation and bifurcation method, and (3) ROM
using seven modes of vibration numerically integrated, shows that
they are in good agreement predicting the subcritical and supercritical
bifurcations, their bifurcation points A and B, and the softening effect
of the response. Specifically, all three methods are in perfect agreement
for dimensionless amplitudes less than 0.5, i.e. dimensional amplitudes
less than half the gap. However, for dimensionless amplitudes between
0.5 and 1.0, i.e. dimensional amplitudes larger than half the gap but less
than the gap, MMS underestimates the softening effect failing to predict
the behavior of the system. MMS is limited to small amplitudes and
small nonlinearities. In this range of amplitudes, ROM method using
seven modes of vibration predicts the behavior of the MEMS plate. The
endpoints of the unstable and stable branches, point C and point D,
are only predicted by ROM using seven modes of vibration. MMS does
not predict the pull-in phenomenon that occurs at high amplitudes,
i.e. point D. However, using MMS one can rapidly evaluate the type
of amplitude–frequency response.

Regarding the physics behind Fig. 2, there are two cases to be
discussed. First case to be discussed is concerned with the steady-state
amplitudes of the MEMS plate at constant voltage as the frequency is
swept up or swept down. The discussion is further conducted based on
the seven modes of vibration ROM AUTO 07 results. As the frequency
is swept up (moving from lower to higher frequency values) the steady-
state amplitude remains zero until it reaches the subcritical bifurcation
point A where it loses stability and jumps to the high amplitude
stable solution branch BD. As the frequency continues to increase, the
steady-state amplitude decreases along branch BD until it reaches the
supercritical bifurcation point B of zero amplitude, and then continues
to have zero amplitude. Arrows from low frequency in the succession
right-up-down-right show this behavior. As the frequency is swept
down, the steady-state amplitudes are zero until the bifurcation point
B is reached. Then the amplitude increases along the stable branch BD
until it reaches point D where the MEMS plate resonator loses stability
and jumps to an amplitude of one, experiencing a pull-in phenomenon.
Arrows from high frequency in the succession left-up-jump to Umax
= 1 show this behavior. One should notice that sweeping down the
frequency forces the system always to pull-in.

Second case is when the voltage and the frequency are constant and
the initial amplitude of the MEMS plate resonator is given. This dis-
cussion shows the importance of the initial amplitude on the response
of the MEMS plate resonator. Several time response simulations have
been conducted, Fig. 3, in order to test the frequency response given in
Fig. 2. One can notice the agreement between Fig. 3 and Fig. 2.

If the frequency is less than 𝜎𝐶 the frequency of point C, then
regardless of the initial amplitude, which has to be less than one, the
system settles to a zero steady-state amplitude. Fig. 3a shows additional
testing by simulating the time response of such point. Matlab is used
to solve the 7T ROM in the case of frequency 𝜎 = −0.075 and initial
amplitude of 𝑈0 = 0.95, and parameters 𝛿 = 0.2, 𝜇 = 0.005. The
requency and the initial amplitude locate the initial position at the
eft-hand side and above of point C. As seen in Fig. 3a, the amplitude
ettles to zero Umax = 0. It can be concluded that the unstable branch
C does not exist at 𝜎 = −0.075, therefore 𝜎𝐶 > −0.075.

If the frequency is between 𝜎𝐶 and 𝜎𝐷, and the initial amplitude
s above the unstable branch AC, the MEMS plate experiences pull-in.
ig. 3b shows additional testing by simulating the time response of such
oint, i.e. frequency 𝜎 = −0.07 and initial amplitude of 𝑈0 = 0.95, and
arameters 𝛿 = 0.2, 𝜇 = 0.005. The frequency and the initial amplitude
ocate the initial position at the right-hand side and above of point
. One can notice that the amplitude increases until it reaches Umax
1, i.e. pull-in. One can conclude that the unstable branch exists at

= −0.07, therefore 𝜎𝐶 < −0.07.

5

Fig. 3. Time response for MEMS clamped circular plate for 7T ROM. AC near natural
frequency. (a) 𝛿 = 0.2, 𝜇 = 0.005, 𝜎 = −0.075. Initial amplitude 𝑈0 = 0.95; (b) 𝛿 = 0.2,

= 0.005, 𝜎 = −0.07. Initial amplitude 𝑈0 = 0.95; (c) 𝛿 = 0.2, 𝜇 = 0.005, 𝜎 = −0.02.
nitial amplitude 𝑈0 = 0.4; (d) 𝛿 = 0.2, 𝜇 = 0.005, 𝜎 = −0.02. Initial amplitude 𝑈0 = 0.65;
e) 𝛿 = 0.2, 𝜇 = 0.005, 𝜎 = −0.012. Initial amplitude 𝑈0 = 0.

To summarize, Figs. 3a and 3b are in agreement with Fig. 2. They
lso show that that point C exists and its frequency 𝜎𝐶 is between
0.075 and −0.07. This is in agreement with 𝜎𝐶 = −0.074 predicted
y AUTO ROM 7T in Fig. 2.

If the frequency is between 𝜎𝐶 and 𝜎𝐴, and the initial amplitude
0 is under the unstable branch AC, the MEMS plate settles to a zero

teady-state amplitude Umax = 0. For an initial amplitude 𝑈0 above the
nstable branch in this case, the MEMS plate goes into pull-in Umax =
. Figs. 3c and 3d show further testing by simulating the time responses
f such points. The time responses for the cases of two points in Fig. 2
aving the same frequency 𝜎 = −0.02, and initial amplitudes 𝑈0 = 0.4
elow and 𝑈0 = 0.65 above unstable branch AC, are shown in Fig. 3c
nd Fig. 3d respectively. Both figures use the same parameters 𝛿 = 0.2,
= 0.005. Figs. 3c and 3d show that for an initial amplitude 𝑈0 below

he unstable branch the system settles to zero amplitude Umax = 0,
hile for an initial amplitude 𝑈0 above the unstable branch the system
oes into pull-in Umax = 1. This is in agreement with the existence
f the unstable branch AC in Fig. 2. If the frequency is between 𝜎𝐴
nd 𝜎𝐵 , regardless the initial amplitude, the MEMS plate settles to an
mplitude on the stable branch BD. Fig. 3e shows further testing by
imulating the time response of such a point, i.e. frequency 𝜎 = −0.012
nd initial amplitude of 𝑈0 = 0, and parameters 𝛿 = 0.2, 𝜇 = 0.005.

One can see that the amplitude increases until it reaches steady-state
amplitude Umax = 0.87, which is in perfect agreement with Fig. 2, this
steady-state point being on the stable branch BD.

Fig. 4 illustrates the convergence of the ROM method using AUTO
07. The convergence of the ROM by the number 𝑁 = 2, 3, 4, 5, 6, 7 of
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Fig. 4. Frequency response for a clamped circular plate showing the convergence of
ROM from 2 to 7 terms. 𝛿 = 0.2, 𝜇 = 0.005.

Fig. 5. Frequency response for a clamped circular plate using MMS and ROM showing
the influence of the excitation parameter 𝛿 at natural frequency and damping parameter
eld constant at 𝜇 = 0.005.

odes of vibration considered in the model is shown. One can see that
or amplitudes below Umax = 0.8 of the gap, regardless the number of
odes 𝑁 = 2, 3, 4, 5, 6, 7 used, ROMs predict the same behavior (same

ranches). However, for amplitudes larger than Umax = 0.8 of the gap,
nly ROM using seven modes of vibration (7T-ROM), 𝑁 = 7, predicts
he unstable point D of the stable branch BD, and the end point C

of the unstable branch AC. These two points C and D are important
since they show the range of frequencies and initial amplitudes for pull-
in, stable non-zero amplitudes, and stable zero amplitudes. One can
conclude that to be able to predict the response in both small and large
amplitudes 7T-ROM has to be used. A similar converge investigation
has been conducted in Ref. [18] for primary resonance. One should
mention that larger number of modes of vibration in the ROM comes
with a significant computational cost.

Next, the effects of voltage 𝛿 and damping 𝜇 parameters on the
amplitude–frequency response are investigated, Figs. 5 and 6–8, re-
spectively.
6

Fig. 6. Frequency response for a clamped circular plate using MMS and ROM showing
the influence of the damping parameter 𝜇 at natural frequency and excitation parameter
held constant at 𝛿 = 0.2.

Fig. 5 shows three cases 𝛿 = 0.13, 𝛿 = 0.15, and 𝛿 = 0.2, and two
ethods of investigation, namely MMS and 7T-ROM AUTO 07. As the

oltage parameter 𝛿 increases, the subcritical and supercritical bifurca-
ions, points A and B, respectively, shift to lower frequencies. Between
he two bifurcation points, point A shifts significantly, increasing the
ange of frequency for which, regardless the initial amplitude 𝑈0, the
mplitude of the MEMS plate settles to a steady-state solution Umax
n branch BD, or to Umax = 1 experiencing pull-in. The endpoint C of

the unstable branch is also shifted to lower frequencies, giving a larger
range of frequencies for which pull-in can be achieved if the initial
amplitude is above the unstable branch. The pull-in instability point
B remains at the same amplitude while shifting to lower frequencies.
MMS fails to predict the behavior of the MEMS plate above Umax = 0.5
of the gap.

Fig. 6 shows the effect of damping on the amplitude–frequency
response using MMS and 7T ROM AUTO 07. Three cases 𝜇 = 0.005,
𝜇 = 0.008, and 𝜇 = 0.009 are showed. At lower amplitudes there
is a significant difference between the 3 cases. The subcritical and
supercritical bifurcation points A and B get closer as the damping
increases, reducing the interval of frequencies for which the MEMS
plate can reach large amplitudes on branch BD or pull-in from an initial
amplitude 𝑈0 = 0. For a given frequency 𝜎 = −0.01, the amplitude
decreases with the increase of damping. For instance, 𝜇 = 0.005 gives
Umax = 0.86, 𝜇 = 0.008 gives Umax = 0.8, and 𝜇 = 0.009 gives Umax
= 0.76.

Also, as the damping increases, both end points C and D are shifted
to lower frequencies, Figs. 7 and 8. Although the change of the values
of dimensionless detuning frequencies 𝜎 of points C and D seem to be
small, the dimensional frequency changes are in the order of thousands
of Hz, Eqs. (3) and (12).

6. Discussion and conclusions

This work investigates the amplitude–frequency response of para-
metric resonance of electrostatically actuated clamped MEMS uniform
circular plate resonators. The frequency of the actuating AC voltage
is near natural frequency. DC voltage is not considered in this work.
However, one should mention that the existence of additional DC
voltage in the system changes the type of bifurcation [47]. Three
methods of investigation, analytical, continuation and bifurcation, and
numerical integration, namely MMS, continuation and bifurcation, and
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Fig. 7. Zoom in of unstable branches from Fig. 6.

Fig. 8. Zoom in of stable branches from Fig. 6.

umerical integration, respectively, are used. The system is first mod-
led using one term (mode of vibration) reduced order model which
s then analytically solved using a perturbation method, i.e. MMS.
econdly, the system is modeled using two, three, four, five, six,
nd seven terms (modes of vibration) ROMs and solved using the
ontinuation and bifurcation software package AUTO 07 in order to
btain the amplitude–frequency responses. The parametric resonance
s additionally tested by numerically integrating seven terms (modes of
ibration) ROM using Matlab to obtain time responses of the MEMS
late resonator. MMS and ROM are in perfect agreement for steady-
tate amplitudes less than 0.5 of the gap. For larger amplitudes MMS
ails since MMS is valid for systems with weak nonlinearities and small
mplitudes. One can improve to some extent the predictions of MMS in
igher amplitudes by increasing the degree of the Taylor polynomial
pproximating the electrostatic force [48] and/or by using a second
rder expansion in Eq. (6). However, by approximating the electrostatic
orce with Taylor polynomials, regardless the expansion order, the
ingular points are lost. Therefore, MMS cannot predict points C and
, Fig. 2. Although MMS is limited, it proves to be an effective and
eliable method for investigating the amplitude–frequency response of a
ystem at small amplitudes. An investigation regarding the convergence
7

of ROM with respect to the number of terms included shows that seven
terms are necessary to accurately model the response of the MEMS
plate at high amplitudes and pull-in instability. The simulated time
responses of the system show a perfect agreement with the amplitude–
frequency response using seven terms ROM AUTO 07. One should
mention that predicting accurately the unstable branch AC is important
since disturbances such as mechanical shock [31,49,50] or spike of
undesired direct current (DC) voltage on the structure can occur leading
to amplitudes above AC, so MEMS plate is accidentally led to pull-in.

This work is valid for (1) axisymmetrical vibrations, (2) small am-
plitudes when compared to the thickness of the plate (no geometrical
nonlinearities), (3) gaps larger than 1 μm (not significant quantum
dynamics effects such as Casimir or Van der Waals forces), and (4)
linear damping, of uniform MEMS plate resonators.

The effects of voltage and damping on the amplitude–frequency re-
sponse are reported. Increasing the voltage parameter 𝛿 results in shift-
ing of subcritical and supercritical bifurcations to lower frequencies,
subcritical significantly more than supercritical. Increasing the damp-
ing coefficient 𝜇 results in narrowing the frequency range between the
subcritical and supercritical bifurcation points.

The numerical simulations of this work are valid only for squeeze
damping in rarefied gas [10]. The energy transfer model of quality
factor Q [10] along with the MEMS resonator characteristics in Table 2
gave the value of damping parameter in Table 3. For the first mode of
vibration, as in this paper, this corresponds to a pressure of 1000 Pa.

Numerical simulations in this work are consistent with the as-
sumption of linear damping. First, using data from Table 2, the mean
free path 𝜆 = 𝐾𝐵 ⋅ 𝑇 ∕

(
√

2𝜋𝑃𝑑2𝑚
)

and Knudson number 𝐾𝑛 = 𝜆∕𝑑
an be determined [10]. Second, the effective viscosity [10] 𝜇𝑒𝑓𝑓 =
𝜇∕

(

1 + 9.658 ⋅𝐾𝑛1.159
)

due to rarefied gas is determined. Finally, the
squeeze number [10] 𝜎 = 12𝜇𝑒𝑓𝑓 ⋅ 𝜔 ⋅ 𝑅2∕

(

𝑃 ⋅ 𝑑2
)

, for the frequency
of vibration of the MEMS plate, results as 𝜎 = 1.115 ⋅ 10−4. For this
squeeze number, the damping is linear according to the data reported
in the literature. Bao and Yang [10] reported the relationship between
viscous damping force and the squeeze number. According to Ref. [10],
for 𝜎 ∈ (0, 1) the viscous damping is linear, and the elastic component
of the squeeze film is negligible.

If one would investigate highly nonlinear problems, superharmonic
and subharmonic resonances, then a ROM using seven modes of vi-
bration would have accurate predictions in both lower and higher
amplitudes. However, MMS using one mode of vibration would fail
to accurately predict the behavior of the plate in high amplitudes.
One could also use three time scales for MMS and different ordering
of the nonlinear terms and damping [42]. However, this will not
produce accurate results for large amplitudes, since MMS is limited
to weak nonlinear systems and small amplitudes. ROM with sufficient
number of modes of vibration accurately predict the behavior of the
structure [18].

Limitations of this work include (1) lack of experimental validation,
(2) the use of ‘‘Kirchhoff plate theory (classical plate theory) valid for
thin plates, i.e. thickness to diameter radius ratio less than 0.05’’ [48],
so the results of this work do not apply to thick plates or plates with ge-
ometrical nonlinearities, and (3) the investigation of only axisymmetric
MEMS plate vibrations.

Future work would include non-axisymmetrical vibrations, quan-
tum dynamics effects (Casimir or Van der Waals), large amplitudes
(geometrical nonlinearities), non-uniform plates, modal interactions
and secondary resonances [51,52]. Dynamic modal characteristics of
nonuniform structures, or methods to find such characteristics are
reported in the literature [53–55]. The quantum dynamics effects are
significant for gaps lower than 1 μm [48,56].
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