
Chapter 15
Casimir Effect on Amplitude-Frequency
Response of Parametric Resonance of
Electrostatically Actuated NEMS Cantilever
Resonators

Dumitru I. Caruntu & Christian A. Reyes

Abstract This paper deals with the effect of Casimir force on the amplitude-
frequency response of parametric resonance of electrostatically actuated nano-
resonators. The resonator is actuated by using an electrostatic force to include a
first order fringe correction. Casimir force and viscous damping force are included
in the model, as well. Both electrostatic and Casimir forces are nonlinear. The be-
havior of the resonator is investigated using two methods, the Method of Multiple
Scales (MMS) for a Reduced Order Model (ROM) using one mode of vibration, and
numerical integration of ROMs using up to five modes of vibration. ROM is based
on the application of a Galerkin procedure that uses the undamped mode shapes of
the cantilevered beam as the basis of functions. The amplitude-frequency response
consists of two bifurcations, namely subcritical and supercritical. The increase of
Casimir effect shows an increase of the interval of frequencies of the unstable zero
steady-state solutions, and a larger range of frequencies for which the system has
stable steady-state solutions for amplitudes larger than 0.5 of the gap.

Keywords: NEMS · Non-linear · Amplitude-frequency · Parametric resonance ·
Casimir effect

15.1 Introduction

Nano-electromechanical systems (NEMS) are of great interest in the development
of miniaturized sensors (Zhang and Turner, 2005; Zhu et al, 2007; Caruntu et al,
2019; Cheng et al, 2007; Cimalla et al, 2007; Zhang et al, 2014), filters (Rhoads
et al, 2005; Lamoreaux, 2004), resonators (Caruntu and Oyervides, 2017; Nayfeh
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et al, 2007; Nayfeh and Younis, 2005; Caruntu and Juarez, 2019; Younis and Nayfeh,
2003; Alsaleem et al, 2009; Zhu et al, 2007; Ke, 2009; Blom et al, 1992; Caruntu
and Knecht, 2011, 2015; Caruntu and Taylor, 2014), actuators (Zand and Ahmadian,
2009; Hu et al, 2004; Younis et al, 2003; Daqaq et al, 2009; Batra et al, 2006; Krylov,
2008; Caruntu et al, 2013b), and switches, motors and relays (Lamoreaux, 2004).
NEMS have numerous applications due to their low power consumption, ease of
fabrication, high efficiency, simple structure, and quick response. These applications
can be achieved via a variety of element configurations and actuation methods (Zhang
et al, 2014). Electrostatic actuation could be used for such NEMS configurations
(Caruntu and Knecht, 2011). One of the critical effects in electrostatically actuated
devices is the presence of pull-in instability which arises due to nonlinearities in
the system. Pull-in occurs when a moving element contacts and “sticks” to another
element within the system. In many systems, this is a major limitation as it can
significantly limit the range of motion of the device (Zhang et al, 2014; Caruntu
et al, 2016). Hence, it is of great interest to predict how system parameters influence
pull-in in order to control or mitigate its effects.

Nonlinearities can arise from a number of sources such as geometric nonlineari-
ties due to large deflections (Spagnuolo and Andreaus, 2019; Baroudi et al, 2019),
squeeze-film damping effects, and actuating forces. In particular, capacitive electro-
static forces are commonly used as the actuating force in nano devices and introduce
nonlinear effects. Additionally, at submicron scales, intermolecular surface forces,
such as Casimir or van der Waals, can affect the behavior of micro- and nano-beams
as well (Ramezani et al, 2007; Caruntu and Juarez, 2019).

The Casimir force and a first order fringe effect models that are considered here
are reported by Ramezani et al (2008). The electrostatic excitation produced by a
fluctuating voltage across the length of the nano-beam parametrically excites the
system. Specifically, a parametric term arises in both linear and nonlinear terms of
the equation of motion. This is similar to Rhoads et al (2006) who investigated a
parametrically excited comb drive system. It was found that such an excitation does
not create just a single defined type of nonlinear effect for the system, but a variety of
effects depending on system parameters in addition to the frequency and amplitude
of excitation. Various bifurcations were found in the system in which the frequency
of excitation was used as the bifurcation parameter. These bifurcations created mixed
nonlinearities in addition to the familiar hardening and/or softening effects. In this
paper, a parametrically excited cantilevered nano-beam is investigated and similar
frequency dependant bifurcations are found.

Understanding the effect of parametric excitations is of general interest. The
stability of these systems and the types of nonlinearities that occur are highly sensitive
to physical parameters as well as frequency and initial amplitude (Nayfeh et al,
2007; Nayfeh and Younis, 2005; Younis and Nayfeh, 2003; Alsaleem et al, 2009;
Rhoads et al, 2006; Caruntu et al, 2016). It is then important to identify bifurcation
parameters and bifurcation points in order to design and control systems under
parametric excitation. Bifurcation phenomena have been investigated in literature for
such parametrically excited systems, mainly for discrete comb drive systems (Rhoads
et al, 2006; DeMartini et al, 2007), but not for cantilevered beam elements. Most of
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the analysis in literature investigated pull-in stability, amplitude-frequency responses
or found limit cycles and time responses of such systems (Zand and Ahmadian, 2009;
Ramezani et al, 2008). Daqaq et al (2009) discussed how parametric excitations in
a cantilevered beam coupled to an electrical system via a piezoelectric patch can
be used for energy harvesting. They found that there is an optimal value for the
electromechanical coupling terms for maximizing the output voltage of the harvester.
They also discussed the sensitivity for the harvester in that there is a critical value
for excitation forces below which oscillations will not occur. The value of the critical
excitation force is dependent on the electromechanical coupling term.

Ke (2009) investigated a double-sided electromechanically driven nanotube res-
onator taking into account van der Waals forces. An energy based method was used
to find analytical relationships for the steady state amplitude of the nanotube as a
function of driving frequency and excitation voltage. An analytical relationship for
the resonant pull-in voltage was also developed. The analytical results where then
verified numerically using a reduced order Galerkin method carried out to 5th order.
Sedighi et al (2014) investigated electrostatically actuated nano cantilever including
the Casmir and van der Waals force using the Parameter Expansion Method.

In this paper, an investigation of the effect of the Casimir forces on the amplitude-
frequency response of parametric resonance of electrostatically actuated NEMS
cantilever resonators is conducted. Forces acting on the resonator are 1) electrostatic
forces to include fringe effect, given by an AC voltage of frequency near natural
frequency of the cantilever, 2) Casimir force due to the gap between the resonator
and a parallel ground plate less than 1µm, and 3) viscous damping force. All forces
are in the category of soft excitation, and weak nonlinearities and damping. In the
case of soft excitation the structure experiences very small amplitudes if not in a
resonant zone.

To the best of our knowledge, this is the first time when 1) the Casimir forces
effect on the amplitude-frequency response is investigated using 2) ROMs up to five
modes of vibration. 3) ROM with one mode of vibration, and all nonlinear terms
expanded in Taylor series with all terms up to cubic power retained is solved using
the Method of Multiple Scales (MMS). 4) ROMs with two, three, four, and five
modes of vibration are numerically integrated using a MATLAB ode solver, namely
ode15s, in order to predict time response of the resonator. 5) ROMs with up to five
modes of vibration are used to perform a continuation and bifurcation analysis using
AUTO 07p software package. 6) This work shows that ROM with five modes of
vibration accurately predict the amplitude-frequency bifurcation diagram (response)
in all amplitudes up to the gap. 7) Casimir forces effect on the amplitude-frequency
response shows that as Casimir forces increase, the softening effect increases and the
bifurcation points (as well as the entire steady-state amplitudes) are shifted to lower
frequencies.
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15.2 System Model

In the present model of the NEMS cantilever resonator, the Euler–Bernoulli theory
of thin beams is used. The resonator is a uniform cantilever.

Electrostatic force is a common source of actuation in Nano-electromechanical
system (NEMS) devices. On micro- and nano-scales, electrostatic actuation is able
to provide sizable forces with relatively low voltages and power consumption. The
Palmer approximate formula (a first order fringing correction) gives the electrostatic
force per unit length as follows:

Fe =
ε0W

2

V (t)2

(g − w)2

�
1 + 0.65

(g − w)

W

�
(15.1)

where ε0 is the permittivity of free space, W is the beam width, g is the gap between
the beam and the ground plate, w is the deflection of the beam, and V (t) is the
applied voltage.

Between the beam and the ground plate is a dielectric material such as air. The
actuation forces are given by the Casimir effect and electrostatic force produced by a
potential difference across the upper beam and underlying ground conducting plate.

The Casimir force is significant for nano-scale systems, and it accounts for the
dispersion forces which arise between closely spaced, uncharged conducting sur-
faces. In the context of the system used in this paper, plate separations are large
enough when pair interactions between atoms and molecules (referred to as the van
der Waals interaction following a 1/d3 relation) are considered non-significant, and
the force between plates depends on only bulk material properties (this is sometimes
referred to as the retarded van der Waals interaction following a 1/d4 relation). This
occurs when the separation of surfaces is significantly larger than the atomic spacing.
The transition between the van der Waals and Casimir regime occurs at a distance of
approximately 20 nm (Ramezani et al, 2008) and hence a larger gap distance will be
considered in this investigation. On the other hand, in order for the Casimir effect to
be significant, surface separations should be less than approximately 1000 nm. The
Casimir force per unit length along the beam is (Lamoreaux, 2004)

Fc =
π2�cW

240(g − w)4
(15.2)

where � = 1.055 × 10−34 Js is Planck’s constant divided by 2π, and c = 2.998 ×
108 ms−1 is the speed of light. The source of this effect is a matter of debate but
is typically attributed to a zero-point energy in the electromagnetic field. Casimir’s
original derivation of Eq. (15.2) is based on this assertion, and with the experimental
verification of this effect has been argued as proof of zero-point energy. Other ap-
proaches, however, have been used to explain the Casimir force completely removed
from zero-point energy resulting in the identical results of Eq. (15.2). One of these
alternative approaches was proposed by Lifshitz who attributed the phenomena to
charge and current fluctuations due to Johnson noise. These fluctuations within a
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material produce a field that can extend beyond its surface resulting in an attractive
force at very small distances (Lamoreaux, 2004).

When modeling structures at the micro and nano scale, air damping effects are
significant and impact the behavior of the system. Viscous flow as the beam moves
through the air is one of the main components of air damping. The force due to
viscous damping is described by

Fd = b
∂w

∂t
(15.3)

where b is the coefficient of viscous damping per unit length.

15.3 Partial-Differential Equation of Motion

The flexible silicon nano cantilever resonator suspended over a grounded substrate
(underlying plate), Fig. 15.1, is electrostatically actuated by applying a potential
difference between the cantilever and the ground plate. In addition to the electrostatic
force, Casimir and viscous damping forces are included in the model. The length
of the beam is considered to be relatively long compared to the underlying gap and
hence the beam will experience only small to moderate deflections, i.e. the slope
of the beam will be relatively small, so the Euler–Bernoulli theory is suitable. This
is important since the model used to describe the electrostatic and Casimir forces
assumes the upper and lower plates to be locally parallel.

Fig. 15.1 Electrostatically Actuated Uniform NEMS Resonator
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The dimensionless equation of motion of the resonator (Caruntu and Knecht,
2011; Caruntu and Martinez, 2014) to include boundary and initial conditions, is
given by





∂4u(τ, z)

∂z4
+

∂2u(τ, z)

∂τ2
= − b∗

∂u(τ, z)

∂τ
+

α

[1− u(τ, z)]4
+

δV 2

[1− u(τ, z)]2
+

fδV 2

1− u(τ, z)

u(τ, 0) =
∂u

∂z
(τ, 0) =

∂2u

∂z2
(τ, 1) =

∂3u

∂z3
(τ, 1) = 0

u(0, z) = f(z),
∂u

∂z
(0, z) = p(z)

(15.4)

One can see at the right-hand side of the differential equation of motion the dimen-
sionless forces acting on the cantilever; from left to right, they are damping, Casimir,
electrostatic, and fringe effect forces. Variables z, τ and u(τ, z) are dimensionless
longitudinal coordinate, dimensionless time, and dimensionless deflection, respec-
tively, and they are related to their corresponding dimensional quantities x, t, and
w(t, x), respectively, as follows:

u = w/g , z = x/� , τ = t · 1

�2

�
EI0
ρA0

, (15.5)

where � , g, E, A0, I0, and ρ are the beam’s length, initial gap between cantilever and
ground plate, Young’s modulus, cross section area, cross section moment of inertia,
and material density, respectively. The dimensionless parameters α, δ, f and b∗

in Eqs. (15.4) track the effects of Casimir forces, voltage (or electrostatic excitation
amplitude), fringe, and damping, respectively, and they are given by

α =
π2�cW �4

240g5EI0
, δ =

ε0W �4

2g3EI0
V 2
0 , f =

0.65g

W
, b∗ = b

�2√
ρA0EI0

(15.6)

where b is the dimensional damping, and V0 the voltage amplitude. In this investiga-
tion, the dimensionless voltage V (τ), dimensionless frequency of excitation Ω, and
the dimensionless natural frequency ω are as follows:

V (τ) = cos
�
Ωτ

�
, Ω = Ω∗�2

�
ρA0

EI0
, ω = ω∗�2

�
ρA0

EI0
(15.7)

where Ω∗ is the dimensional frequency of excitation, and ω∗ is the dimensional
natural frequency of the resonator. The quality factor is related to dimensionless
damping (Caruntu and Knecht, 2011).
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15.4 Method of Multiple Scales

In what follows, the case of weak nonlinear forces and damping is considered,
i.e. the Casimir, electrostatic, fringe, and damping parameters α, δ, f, and b∗ in
Eq. (15.4) are small. The Casimir, electrostatic, and fringe effect terms in Eq. (15.4)
are expanded in Taylor series around u = 0 and all terms up to cubic power are
retained. Then MMS is applied. A small dimensionless bookkeeping parameter ε is
introduced as factor of all small terms in the resulting equation

∂2u

∂τ2
+

∂4u

∂z4
= −εb∗

∂u

∂τ
+ εα

�
1 + 4u+ 10u2 + 20u3

�

+ εδ
��
1 + f

�
+
�
2 + f

�
u+

�
3 + f

�
u2 +

�
4 + f

�
u3

�
V 2(τ) (15.8)

A first-order expansion of the dimensionless transverse displacement u is considered.
This is given by

u(z, τ, ε) = u0(z, T0, T1) + ε · u1(z, T0, T1) (15.9)

where T0 = τ is fast time scale and T1 = ε·τ is slow time scale. The time derivatives
become

∂/∂τ = D0 + ε ·D1, Dn = ∂/∂Tn, n = 0, 1 (15.10)

where Dn, n = 0, 1 represent partial derivatives with respect to the fast and slow
time scales. Substituting Eq. (15.9) and Eq. (15.10) into Eq. (15.8), and equating
coefficients of like powers of the bookkeeping parameter, the following two approx-
imation problems, namely zero-order and first-order, result

Order ε0 : D2
0u0 +

∂4u0

∂z4
= 0 (15.11)

Order ε1 : D2
0u1 +

∂4u1

∂z4
= −2D0D1u0 − b∗D0u0 + α

�
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0

�

+ δ
��
1 + f

�
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�
2 + f

�
u0 +

�
3 + f

�
u2
0 +

�
4 + f

�
u3
0

�
V 2

�
T0

�

(15.12)

The solution u0 of Eq. (15.11) is given by

u0

�
z, T0, T1

�
= ϕ(z)

�
A
�
T1

�
eiωT0 +A

�
T1

�
e−iωT0

�
(15.13)

where A and A are complex conjugate coefficients depending on the slow time scale.
Enforcing the boundary conditions given by Eq. (15.4), the mode shapes ϕk

�
z
�

and
the corresponding natural frequency ωk are obtained. Natural frequencies and mode
shapes for uniform cantilevers are reported in the literature Alsaleem et al (2009)
and Zhu et al (2007); Caruntu and Knecht (2011). Natural frequencies and mode
shapes of nonuniform structures as well as mathematical methods for finding them
can be found in the literature Caruntu (2007, 2005, 2013). The mode shapes ϕk

�
z
�

of a uniform cantilever form an orthonormal set, satisfying
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(15.14)

where δkn is Kronecker’s delta. The first-order approximation can be found by
solving the nonhomogeneous Eq. (15.12). Substituting Eq. (15.13) into Eq. (15.12)
, it results

D2
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∂z4
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In this investigation the AC frequency of excitation is considered near natural fre-
quency Ω ≈ ωk. This nearness is showed by a small detuning parameter σ as
follows:

Ω = ωk + εσ (15.16)

Equation (15.15) is then expanded. The square of the dimensionless voltage V is
given by

V 2
�
T0

�
=

1

2
+

1

4

�
e2iΩT0 + e−2iΩT0

�
(15.17)

After substituting Eq. (15.16) and Eq. (15.17) into Eq. (15.15), the secular terms
containing

�
eiωkT0

�
are collected and their sum set equal to zero. In addition,

the non-homogeneous Eq. (15.15) has to be orthogonal to every solution of the
homogeneous problem Eq. (15.11), so the equation of secular terms becomes

− 2iωkg1kkA
�
k − iωkb

∗g1kkAk +
�
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�
g1kkAk + 3

�
20α+ C4
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g3kkA

2
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1

2
C4g3kkA

3
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−2iσT1 = 0 (15.18)

where

Cm =
1

2

�
m+ f

�
δ, m = 1, 2, 3, 4 , gnkk =

�
ϕn
k ,ϕk

�
=

� 1

0

ϕn
kϕkdz

(15.19)
and n is greater than or equal to zero. A�

k is the derivative of Ak with respect to the
slow time scale T1. Express Ak in polar form

Ak =
1

2
ake

iβk (15.20)
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where ak and βk are real and represent the amplitude of the beam and the phase of the
system relative to the excitation frequency, respectively. Substituting Eq. (15.20) into
Eq. (15.18) and separating the real and imaginary parts, the following amplitude-
phase system of equations results

a�k = ak

�
− b∗

2
+

�
C2 +

C4

2

g3kk
g1kk

a2k

�
sin2γk
4ωk

�
(15.21)

akγ
�
k = akσ +

4α+ C2

2ωk
ak +

3
�
20α+ C4

�

8ωk

g3kk
g1kk

a3k

+ ak

�
C2 + C4

g3kk
g1kk

a2k

�
cos2γk
4ωk

(15.22)

where
γk = σT1 − βk (15.23)

The steady-state solutions result by substituting a�k = γ�
k = 0 into Eqs. (15.21)

and (15.22). One of the steady-state solutions is the trivial solution ak = 0 for all
values of the detuning parameter σ. The non-trivial steady state solution case consists
of a set of parametric equations describing the amplitude-frequency bifurcation
diagram (response) as follows:

a2k =
2g1kk
C4g3kk

�
2ωkb

∗

sin2γk
− C2

�
(15.24)

σ = −4α+ C2

2ωk
− 3

�
20α+ C4

�

8ωk

g3kk
g1kk

α2
k −

�
C2 + C4

g3kk
g1kk

a2k

�
cos2γk
4ωk

(15.25)

The MMS steady-state amplitudes of the amplitude-frequency response, Eqs. (15.24)
and (15.25), are afterwards presented in Fig. 15.2 for a uniform beam. It is seen that
a softening type of behavior occurs with two branches, lower and upper, which are
unstable and stable, respectively.

15.5 Reduced Order Model of Uniform NEMS Cantilevers

The analytical results based on steady-state amplitudes which were obtained using
MMS are compared to numerical solutions of Eq. (15.4), in the case of uniform
resonators. The system is considered at nano scale, where the Casimir force is
significant.

To numerically investigate the system, a reduced order model (ROM) is con-
structed (Alsaleem et al, 2009; Younis et al, 2003; Caruntu et al, 2013a). This is
done by utilizing a Galerkin procedure in which the solution is
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u
�
z, τ

�
=

N�

i=1

ui

�
τ
�
ϕi

�
z
�

(15.26)

where ui

�
τ
�

are time dependent functions to be determined, N the number modes
of vibrations used, and ϕi

�
z
�

the mode shape functions of the uniform cantilever.
The mode shapes satisfy Eqs. (15.14).

It is important to note that when constructing ROM, the treatment of the excitation
force is very important. It was reported by Younis et al (2003) that the exact form
of the forcing function must be used to numerically solve the equations of motion
accurately. It was shown that when the forcing function was Taylor expanded out to
third order before solving, that erroneous results were predicted in amplitudes larger
than 0.5 of the gap. In addition, for the solutions to converge, the number of terms
in Eq. (15.26) must be at least N = 5 (Caruntu et al, 2013b,c).

To implement the ROM, Eq. (15.4) is first multiplied by
�
1 − u

�4 in order
to eliminate any displacement terms from appearing in the denominator. Using
Eq. (15.26) and (15.14), multiplying the resulting equation by ϕn

�
z
�

and integrating
from z = 0 to 1, the following system of equations results
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where n = 1, 2, . . . , N , and i, j, k, l,m = 1, 2, . . . , N , and
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hn =

� 1

0

ϕndz, hni =

� 1

0

ϕnϕidz, hnij =

� 1

0

ϕnϕiϕjdz,

hnijk =

� 1

0

ϕnϕiϕjϕkdz, hnijkl =

� 1

0

ϕnϕiϕjϕkϕldz, (15.28)

hnijklm =

� 1

0

ϕnϕiϕjϕkϕlϕmdz

Equations (15.27) form a system of N non-explicit coupled, nonlinear ordinary-
differential equations. A finite number of terms N are used in Eq. (15.27). N =
2, 3, 4, and 5 were the ROMs considered.

15.6 Numerical Simulations

The case of uniform cantilever beams is considered. The dimensionless cantilevers
mode shapes, Eqs. (15.13) and (15.14) are reported by Weaver Jr et al (1990) and
given by

ϕk

�
z
�
= −

�
cos

�√
ωkz

�
− cosh

�√
ωkz

�
+ Ck

�
sin

�√
ωkz

�
− sinh

�√
ωkz

���

(15.29)
where ωk are the dimensionless natural frequencies. These frequencies and the
constant coefficients Ck of the first five modes of vibration are given in Table 15.1
(Weaver Jr et al, 1990). Substituting Eq. (15.29) into Eq. (15.19) the coefficients g1kk

Table 15.1 First five natural frequencies and mode shape coefficients for uniform cantilever

k = 1 k = 2 k = 3 k = 4 k = 5

ωk 3.51602 22.0344 61.6972 120.9019 199.8595
Ck -0.734 -1.0185 -0.9992 -1.00003 0.99999

and g3kk can be obtained. The first mode k = 1 is considered. The g coefficients in
this case are

g011 = 0.7830, g111 = 1.0000, g211 = 1.4778, g311 = 2.3488 (15.30)

Similarly, substituting Eq. (15.29) into Eq. (15.28), the h coefficients of Eq. (15.27)
are calculated. Table 15.2 gives the constants of the system. Table 15.3 shows values
of physical characteristics of a typical nano-beam. This leads to realistic values of the
dimensionless parameters given by Eqs. (15.6), and shown in Table 15.4. Substituting
the values given in Table 15.4 and Eq. (15.30) into the steady-state Eqs. (15.24) and
(15.25), the amplitude-frequency relationships are obtained.
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Table 15.2 System Constants

Planck’s constant/2π � 1.055× 10−34 J s
Speed of light c 2.998× 108 m/s
Permittivity of free space ε0 8.854× 10−12 C2/N/m2

Table 15.3 Dimensional System Parameters

Beam width W 125 nm
Beam length l 132 µm
Beam thickness h 165 nm
Initial gap distance g 500 nm
Material density ρ 2330 kg/m3

Young’s modulus E 169 GPa
Quality factor Q 350

Voltage V0 0.02 V

Table 15.4 Dimensionless System Parameters

Casimir parameter α 0.01

Voltage parameter δ 0.10

Fringe parameter f 0.26

Damping parameter b∗ 0.01

Figure 15.2 shows the amplitude-frequency response using three different meth-
ods: MMS, 5T ROM AUTO, and 5T Time Response. In the horizontal axis is the
detuning frequency σ, and in the vertical axis Umax the amplitude of the tip of the
cantilever. MMS is a perturbation method used to solve a ROM with one mode of
vibration and predict the amplitude-frequency response, Eqs. (15.24) and (15.25).
5TROM AUTO is a continuation and bifurcation analysis of ROM with five modes
of vibration, Eqs. (15.27) with N = 5, by using the software package AUTO 07p in
order to predict the amplitude-frequency response. 5T Time Response is a numerical
integration of ROM with five modes of vibration, Eqs. (15.27) with N = 5, using
ode15s, a MATLAB solver of ordinary differential equations, in order to obtain time
responses of the structure. The three methods can be seen to be in good agreement at
amplitudes lower than 0.4 of the gap. However, at higher amplitudes, MMS overesti-
mates the amplitudes. At larger amplitudes 5T ROM AUTO and 5T Time responses
are in good agreement.

The amplitude-frequency response consists of zero-amplitude steady-states, and
two non-zero steady-state amplitude branches. The stable and unstable steady-state
solutions are represented by solid and dashed lines, respectively. Nontrivial ampli-
tudes resulting from Eqs. (15.24) and (15.25) are shown in Fig. 15.2. The solid
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Fig. 15.2 Comparison between MMS, 5T ROM AUTO, and 5T Time Responses. α = 0.01,
δ = 0.1, b∗ = 0.01, and f = 0.26

branch 1, shows the stable steady-state amplitudes. The dashed branch 2, shows
the unstable steady-state amplitudes. Zero amplitude solutions exist for all frequen-
cies. The zero-amplitude solution is stable except for the detuning parameter values
of σA ≤ σ ≤ σB . Two distinct bifurcations, one subcritical and the other one
supercritical, are shown. Bifurcation points A and B are subcritical and supercrit-
ical bifurcation points, respectively. The results shown in Fig. 15.2 are similar to
those reported by Rhoads et al (2006) for a parametrically excited comb drive. Zhu
et al (2007) also obtained similar results in nonlinearly coupled micromechanical
oscillators where a double pitchfork bifurcation was found with softening like char-
acteristics. One can notice a softening nonlinear behavior of the system, i.e. the
non-zero amplitude branches are bent towards lower frequencies. As the frequency
is swept up, the system has zero steady-state amplitude until reaching the subcritical
bifurcation point A. At this point the system loses stability and the system jumps
to larger amplitudes located on branch 1. As the sweeping of frequency continues,
the amplitude decreases along branch 1 until it reaches the supercritical bifurcation
point B. After this point, the response continues with zero amplitudes. When the
frequency is swept down, the system has zero steady-state amplitude until it reaches
bifurcation point B. The amplitude starts increasing along branch 1 until it reaches
the end of the branch, point C. After this point the system loses stability and pull-in
occurs.

It should be noted that the results of Fig. 15.2 will never exceed unity since the
beam displacement of the tip is being considered relative to the initial gap between
the beam and ground electrode. If the beam’s displacement does reach or approach
unity it will experience a pull-in phenomenon. The only stable non-zero amplitudes
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are found in a band around −0.151 < σ < −0.016. For frequencies to the right of
the stable branch, σ > −0.016, all steady-state amplitudes are zero. For any given
frequency to the left of the unstable branch, σ < −0.029, depending on the initial
amplitude, the nano-cantilever settles either to zero steady-state amplitude, or larger
steady-state amplitude on branch 1, or experiences pull-in.

Figure 15.3 shows the effect of the Casimir parameter on the amplitude-frequency
response. As the Casimir force increases the response is shifted to lower frequencies.
Both branches, along with the bifurcation points, are shifted as a whole. While
the bifurcation points A and B are shifted to lower frequencies, the gap between
them does not significantly change. However, the softening effect increases, i.e. the
non-zero amplitude branches 1 and 2 are bent to a larger degree towards lower
frequencies. Therefore the system starts experiencing lower amplitudes with greater
Casimir parameter. The unstable branch experiences less bending from the influence
of the Casimir force than the stable branch. This makes the stable branch get closer
to the unstable branch, reducing the gap between both branches. The end point C
of the stable branch 1 is shifted to lower frequencies as the Casimir force parameter
increases.

Fig. 15.3 Casimir influence on the frequency response using MMS and 5T ROM AUTO. δ = 0.1,
b∗ = 0.01, and f = 0.26

Figures 15.4 through 15.6 show the time responses for specific frequencies and
initial amplitudes. These time responses are in agreement with 5T ROM AUTO
branches in Fig. 15.2. Time responses in Figures 15.4 and 15.5 settle to steady-state
amplitudes on stable branches. For initial amplitudes below and above the unstable
branch one can see that different steady-state amplitudes are reached for the same
frequency, Figure 15.5 c) and d). Figure 15.6 shows two time responses in agreement
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with the predicted last stable amplitude, point C, achieved at high amplitudes. A slight
change in the frequency in Figure 15.6 shows that the nano-cantilever either settles
to a steady-state amplitude on branch BC or experiences pull-in.

Fig. 15.4 Time Responses using five term (5T) ROM. b∗ = 0.01, f = 0.26, δ = 0.1, α = 0.01 and
a) σ = −0.025 with initial amplitude U0 = 0.2, b) σ = −0.035 with initial amplitude U0 = 0.2,
c) σ = −0.015 with initial amplitude U0 = 0.2, d) σ = −0.018 with initial amplitude U0 = 0.1.

Figure 15.7 shows the convergence of the amplitude-frequency response when
using MMS, 2 terms, 3 terms, 4 terms, and 5 terms ROM AUTO. When increasing
the number of terms used in the ROM, the softening effect experienced in the system
is better captured. The stable branch 1 with the end point C can be seen bending as
the number of terms increases. For 4 and 5 term ROM AUTO the branches do not
drastically change, so 5 term ROM AUTO is used in this research. The end point C
of the stable branch can also be seen moving towards lower frequency as the number
of terms increases. 5T ROM AUTO predicts the response and pull-in accurately.

Figure 15.8 and 15.9 show the convergence of the bifurcation points A and B
with the number of terms of ROM. Both figures show that there is no significant
difference between 4 and 5 term ROM AUTO, the responses overlapping each other.

Figure 15.10 shows the effect of the voltage parameter δ on the amplitude-
frequency response of the resonator under Casimir force. One noticeable impact
on the amplitude-frequency response is the frequency gap between the stable and
unstable branches. As the voltage parameter increases, the frequency gap between
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Fig. 15.5 Time Responses using five term (5T) ROM. b∗ = 0.01, f = 0.26, δ = 0.1, α = 0.01 and
a) σ = −0.025 with initial amplitude U0 = 0.1, b) σ = −0.029 with initial amplitude U0 = 0.6,
c) σ = −0.035 with initial amplitude U0 = 0.7, d) σ = −0.035 with initial amplitude U0 = 0.1.

Fig. 15.6 Time Responses using five term (5T) ROM. b∗ = 0.01, f = 0.26, δ = 0.1, α = 0.01 and
a) σ = −0.15 with initial amplitude U0 = 0.87, b) σ = −0.16 with initial amplitude U0 = 0.9
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Fig. 15.7 Convergence of frequency response using MMS, 2 terms, 3 terms, 4 terms, and 5 terms
ROM AUTO. α = 0.01, δ = 0.1, b∗ = 0.01, and f = 0.26

Fig. 15.8 Zoom in showing the convergence of the subcritical bifurcation point A with the number
of terms in ROM.
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Fig. 15.9 Zoom in showing the convergence of the supercritical bifurcation point B with the
numbers of terms in ROM.

Fig. 15.10 Voltage influence on the frequency response using MMS and 5T ROM AUTO.
α = 0.01, b∗ = 0.01, and f = 0.26
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the stable and unstable branch increases due to shifting of the unstable branch, and
the subcritical bifurcation point A, to lower frequencies. The stable branch and the
supercritical bifurcation point B does not have a significant shifting. So, the zero-
amplitude region between branches widens with an increase in the voltage parameter.
Therefore, a larger voltage parameter δ increases the range of values of frequencies�
σA,σB

�
for which the resonator experiences non-zero steady-state amplitudes.

The end point C of the stable branch is shifted to lower frequencies as the voltage
parameter is increased. This causes the range of values of resonant frequencies�
σB ,σC

�
for which the resonator can reach non-zero steady-state amplitudes to

increase.
Figure 15.11 shows the effect of fringing parameter f on the amplitude-frequency

response of the resonator under Casimir force. It is seen that as the fringe parameter
increases, the stable and unstable branches are shifted to lower frequencies. Similar
to the voltage effect, the unstable branch along with the subcritical bifurcation point
A are significantly shifted towards lower frequencies with the increase of the fringe
parameter. The supercritical bifurcation point B located on the stable branch is shifted
towards lower frequencies as well, but the shifting is not significant. The end point
C on the stable branch is shown to keep the same amplitude but is shifted towards
lower frequencies. The unstable region

�
σA,σB

�
between branches widens.

Since the value of the fringe effect parameter depends on gap to width ratio,
resonators using narrow beam elements relative to the gap size should pay particular
attention to the fringing that arises in the electrostatic field. The fringe effect enhances
the electrostatic force.

Fig. 15.11 Fringe effect on the frequency response using MMS and 5T ROM AUTO. α = 0.01,
δ = 0.1, and b∗ = 0.01
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Figure 15.12 shows the effect of damping parameter on the amplitude-frequency
response of the resonator under Casimir force. Increasing the damping parameter
b∗ the subcritical bifurcation point A is shifted to higher frequencies, while the
supercritical bifurcation point B is shifted to lower frequencies. Therefore, as the
damping is increased, the frequency gap between the stable and unstable branches,
between points A and B as well, is reduced. At higher amplitudes, the end point C of
the stable branch is shifted to higher frequencies. As for the unstable branch, there
is minor change at higher amplitudes.

Fig. 15.12 Damping influence on frequency response using MMS and 5T ROM AUTO. α = 0.01,
δ = 0.1, and f = 0.26

15.7 Discussion and Conclusions

This paper investigates the Casimir effect on the behavior of electrostatically actuated
NEMS cantilever resonators under parametric resonance. Euler–Bernoulli beam
theory was used for modeling the cantilevered beam under electrostatic actuation.
AC voltage of frequency near natural frequency of the resonator was used to actuate
the cantilever. This led the system into parametric resonance. The forces included
in the model consisted of electrostatic force to include fringe effect, Casimir and
damping forces. The effects of the dimensionless parameters on the amplitude-
frequency response were investigated and reported.

After nondimensionalizing the equation of motion, two methods were used to
solve the equation. The Method of Multiple Scales (MMS) was used in a direct
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approach to find the amplitude-frequency relationship of the system. One should
mention that MMS solved a ROM with one mode of vibration. The second method
used was the Reduced Order Model method with up to five modes of vibration. ROM
was based on a Galerkin procedure. ROM is accurate for strong nonlinearities. The
amplitude-frequency responses from these two methods are compared. Although
MMS captures the system’s behavior quite well, it is limited to weak nonlinearities
and small amplitudes. Nayfeh et al (2007); Nayfeh and Younis (2005) reported the
use of ROM to predict periodic motions. Using ROM method with five modes of
vibration, the response at higher amplitudes is better captured when compared to
MMS. ROM captured also the behavior of the resonator for larger amplitudes includ-
ing the pull-in instability. A similar ROM was used for the cantilevered resonator
considered here using up to five modes of vibration. Using four or more modes
guarantees the convergence of the steady state amplitude (Nayfeh et al, 2007; Younis
et al, 2003). The results of the ROM where compared with the direct (Nayfeh et al,
2007) approach using the Method of Multiple Scales (MMS) for all cases.

It is important to note than both methods are in agreement for amplitudes less
than 0.4 of the gap. The ROM is more accurate for amplitudes larger than 0.4 of the
gap. However, the increased accuracy comes at a cost of increased computational
time.
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