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Microelectromechanical
Systems Cantilever Resonators
Under Soft Alternating Current
Voltage of Frequency Near
Natural Frequency
This paper deals with nonlinear-parametric frequency response of alternating current
(AC) near natural frequency electrostatically actuated microelectromechanical systems
(MEMS) cantilever resonators. The model includes fringe and Casimir effects, and damp-
ing. Method of multiple scales (MMS) and reduced order model (ROM) method are used
to investigate the case of weak nonlinearities. It is reported for uniform resonators: (1)
an excellent agreement between the two methods for amplitudes less than half of the gap,
(2) a significant influence of fringe effect and damping on bifurcation frequencies and
phase–frequency response, respectively, (3) an increase of nonzero amplitudes’ fre-
quency range with voltage increase and damping decrease, and (4) a negligible Casimir
effect at microscale. [DOI: 10.1115/1.4028887]

Introduction

Microelectromechanicals systems (MEMS) find their use in
biomedical, automotive, and aerospace. MEMS beams are com-
mon and successfully used as chemical sensors [1], biosensors [2],
pressure sensors [3], switches [4], and energy harvesters [5].
MEMS systems are nonlinear due to actuation forces, damping
effects, large structural deformation, and intermolecular surface
forces, such as Casimir and/or van der Waals, which are signifi-
cant for gaps less than 200 nm [6]. Structural nonlinearities are
significant for short beams and/or large deflections. Nonlinearities
due to damping effects, such as squeeze film damping, can be
neglected within certain pressure regimes [7,8] or when consider-
ing steady state behavior [9]. Conversely nonlinearities from elec-
trostatic forces cannot be neglected [10].

Parametrically excited MEMS resonators via electrostatic
actuation are highly dependent on parameters [9,11–13]. MEMS
cantilevers with periodic coefficients in both linear and nonlinear
terms of the equation of motion [11] have been reported. Clam-
ped–clamped resonators using the method of multiple scales
(MMS) and reduced order model (ROM) method have been inves-
tigated [14]. Yet, fringe correction and Casimir effect have not
been considered, and the second harmonic has been neglected due
to the direct current (DC) voltage much larger than the AC voltage
in Ref. [14]. Electrostatically actuated MEMS resonators modeled
as mass–spring–damper system have been investigated using the
method of averaging [9] and their frequency response and stability
found. Yet, it lacked numerical validation, continuous system
modeling, and fringe correction effect. Frequency response of
cantilever resonators has been reported [15–21]. Forces driving
the resonator in these investigations were due to thermal (Brown-
ian) excitation and fluid hydrodynamics. Yet, such forces did not
produce parametric excitations or nonlinear behavior. Parametric
resonance of a MEMS cantilever [22] has been created via a feed-
back scheme on a piezoelectrically driven microcantilever using a

linear Mathieu’s equation as the governing equation of motion.
Yet, the parametric coefficient was only in the linear terms. Non-
linear behavior of electrostatically actuated cantilever beam micro
resonators, including fringe effect, has been investigated [11]
using MMS and ROM. Yet, the nonlinear behavior was due to AC
voltage of frequency near a system’s half natural frequency of the
resonator, which resulted in primary resonance. However,
resonances occur at various excitation frequencies due to the para-
metric excitation [11–13,23].

Partial differential equations of motion of such MEMS continu-
ous systems can be solved using analytical methods such as aver-
aging, harmonic balance, or MMS [11,24], and numerical
methods such as finite element (FEM), boundary-element (BEM),
finite difference (FDM), and ROM method [24]. FEM, BEM, and
FDM methods are relatively accurate. Yet, they are only adequate
for static systems, which require less computational time and cost
than dynamic systems.

In this paper, the nonlinear parametric behavior of MEMS can-
tilever resonators due to AC of frequency near a system’s natural
frequency electrostatic actuation is investigated. This leads to
parametric resonance as shown afterwards. An Euler–Bernoulli
MEMS cantilever including electrostatic force, fringe effect,
damping, and Casimir effect is investigated using MMS and ROM
[11,24–26]. MMS is applied directly to the dimensionless partial
differential equation of motion of the system in order to obtain
analytically the amplitude–frequency response. It is showed that
at micro scale the Casimir effect is negligible.

To the best of our knowledge, this is for the first time when for
electrostatically actuated MEMS cantilever resonators: (1) para-
metric resonance due to only soft AC voltage leading to a soft
force of two components, constant and second harmonic [11], is
considered. Soft actuation can be used for microbalances due to
very small power consumption. (2) An approach in which the
model includes periodic coefficients in the nonlinear terms is con-
sidered. The model includes linear parametric, nonlinear, and
most importantly parametric-nonlinear terms. This is in contrast
with other works on parametrically excited beams. For instance,
AC voltage was much smaller than the DC voltage in Ref. [27],
which led to very small nonlinear parametric terms that were
neglected in the MMS. (3) The convergence of ROM frequency
response using two, three, four, and five terms is reported as well.
(4) A direct comparison between MMS and ROM is reported.
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This work shows that: (1) the approach in which the MMS model
includes the periodic coefficients in the nonlinear gives an excellent
agreement between MMS and ROM of any number of terms for
amplitudes less than 0.5 of the gap. (2) The pull-in from large
amplitudes is predicted only by four or more terms in the ROM, (3)
while two and three terms ROM and MMS fail in this prediction.
(4) Casimir effect is negligible at microscale. This effect is a point
of future investigation at nanoscale levels. Also, (5) the influences
of damping, voltage, and fringe effect on the frequency response of
the MEMS cantilever resonator are reported.

Equation of Motion

Electrostatically actuated system to be investigated consists of
a conducting elastic MEMS cantilever over a rigid stationary con-
ducting plate (ground plate) (Fig. 1). Between the beam and plate
is a dielectric fluid such as air. Motion equation is based on
Euler–Bernoulli theory (structural nonlinearities are neglected)
and includes electrostatic, viscous damping, and nanoscale surface
forces such as Casimir. The electrostatic force includes a first-
order fringe field correction based on Palmer’s formula [10]. The
electrostatic force is produced by applying a potential difference
between the flexible MEMS cantilever and the rigid plate, Fig. 1,
VðtÞ ¼ Vp þ V0 cosðXtÞ, where Vp is the polarizing DC voltage,
and V0 and X are the AC voltage and excitation frequency. Since
the electrostatic force is proportional to the square of the voltage,

there are three components: constant V2
p þ 0:5V2

0 , first harmonic

2VpV0 cosðXtÞ, and second harmonic 0:5V2
0 cosð2XtÞ [11]. In this

work, Vp ¼ 0, therefore, only the second harmonic is present

VðtÞ2 ¼ V2
0

2
þ V2

0

2
cosð2XtÞ (1)

However, V0 contributes to a static voltage, despite the lack of
a DC voltage. Therefore, the resonator vibrates about a deformed
position (not the position at rest). All forces in the system, except
damping, are nonlinear. In this work the case of uniform MEMS
cantilever resonators. The boundary value problem of electrostati-
cally actuated uniform MEMS cantilevers [11,25,26] is given by
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(2)

where VðsÞ is the dimensionless voltage, and u, z, and s are beam
dimensionless deflection, dimensionless longitudinal coordinate,
and dimensionless time, respectively

u ¼ w=g; z ¼ x=‘; s ¼ 1

‘2

ffiffiffiffiffiffiffiffi
EI0

qA0

s
� t (3)

Constant q is the beam density, A0 is the cross-sectional area, w is
the dimensional beam deflection, t is the dimensional time, E is
the Young modulus, I0 is the cross-sectional moment of inertia, x
is the dimensional longitudinal coordinate, ‘ is the cantilever
length, and g is the gap (Fig. 1). The dimensionless parameters of
Eq. (2), Casimir effect a, electrostatic excitation (voltage) d,
fringe effect f , damping b�, and dimensionless frequency x�, are
[11,25,26] given by

a ¼ p2�hcW‘4

240g5EI0

; d ¼ e0W‘4

2g3EI0

V2
0 ; f ¼ 0:65g

W
;

b� ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘4

qA0EI0

s
; x� ¼ x‘2

ffiffiffiffiffiffiffiffi
qA0

EI0

r (4)

where �h¼ 1.055� 10�34 J s is Planck’s constant divided by 2p,
c¼ 2.998� 108 m s�1 is the speed of light, e0¼ 8.854� 10�12 C2

N�1 m�2 is the permittivity of free space, W is the beam width,
b is the damping coefficient, and V0 is the amplitude of the
AC voltage. From this point forward, dimensionless natural fre-
quencies of the MEMS cantilever are denoted simply by xk.

AC Near Natural Frequency X� � xk, Parametric

Resonance

The dimensionless AC voltage considered in this investigation
is given by

VðsÞ ¼ cos X�T0; X� ¼ X‘2

ffiffiffiffiffiffiffiffi
qA0

EI0

r
(5)

where X� and X are the dimensionless frequency of excitation and
its corresponding dimensional frequency, respectively. V2ðsÞ in
terms of imaginary exponentials is

V2ðT0Þ ¼
1

2
þ 1

4
e2X�iT0 þ e�2X�iT0

� �
(6)

AC near natural frequency X� � xk can be written as

X� ¼ xk þ er (7)

where xk is dimensionless natural frequency of the MEMS canti-
lever resonator, r is a detuning parameter, and e is a small book-
keeping device. The resulting resonance is a subharmonic
resonance, namely, parametric resonance, since the electrostatic
force (to include fringe effect) is near twice natural frequency
Eqs. (2), (6), and (7).

Method of Multiple Scales (MMS)

The frequency response of the resonator is investigated using
MMS [11,25,26], a perturbation method valid for weak nonlinear-
ities and small to moderate amplitudes. Therefore, soft nonlinear
parametric actuation, soft Casimir effect, soft damping, and small
to moderate deflections are considered, i.e., the parameters given
by Eq. (4) are small. MMS and ROM results are compared in a
later section, namely Numerical Solutions for Uniform MEMS
Resonators.

Direct Approach of the Problem. Expanding in Taylor series
the right-hand side terms of Eq. (2) up to third-order in u around
u ¼ 0, Eq. (2) for small parameters a; d, f , and b� can be written as

@2u
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þ ea½1þ 4uþ 10u2 þ 20u3�

þ ed½ð1þ f Þ þ ð2þ f Þuþ ð3þ f Þu2

þ ð4þ f Þu3�V2ðsÞ (8)Fig. 1 Uniform MEMS cantilever resonator
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where e is a small dimensionless bookkeeping parameter. MMS is
then directly applied to Eq. (8). A first-order expansion of u is
considered as follows:

u z; s; eð Þ ¼ u0 z;T0; T1ð Þ þ e � u1 z;T0; T1ð Þ (9)

where T0 ¼ s is fast time scale and T1 ¼ e � s is slow time scale.
The time derivative becomes @=@s¼D0þe �D1, where
Dn¼@=@Tn; n¼0;1. Replacing Eq. (9) and time derivatives into
Eq. (8), and collecting coefficients of like powers of e, two approxi-
mation problems, zero-order and first-order, respectively, result as
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Zero-Order Approximation. The solution u0 of Eq. (10) is
given by [11,25,26]

u0 z; T0;T1ð Þ ¼ u zð Þ A T1ð ÞeixT0 þ A T1ð Þe�ixT0
� �

(12)

where A and A are complex conjugate coefficients to be determined.
Equation (12) must satisfy the boundary conditions of Eq. (10). This
gives the natural frequencies xk and the mode shapes uk zð Þ of the
MEMS cantilever. Natural modes for uniform cantilevers and canti-
levers of varying thickness [28,29], and examples of using factoriza-
tion method [30,31] are reported in the literature. The mode shapes
uk zð Þ [11,25,26,28] form an orthonormal set. They satisfy

u 4ð Þ
k ¼ x2

kuk

uk 0ð Þ ¼ u0k 0ð Þ ¼ u00k 1ð Þ ¼ u000k 1ð Þ ¼ 0

(
;

um;unh i ¼
ð1

0

umundz ¼ dmn

(13)

where dmn is Kronecker’s delta.

First-Order Approximation. The first-order approximation
might be found by solving the inhomogeneous Eq. (11). Replacing
Eq. (12) for the kth mode into Eq. (11), it results
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Substitute Eqs. (6) and (7) into Eq. (14). A solvability condition
requires that the right-hand side of Eq. (14) is orthogonal to every
solution of the homogenous problem Eq. (10). Applying the ortho-
gonality condition, multiplying by uk zð Þ and integrating from 0 to
1, collecting all secular terms and set the sum equal to zero, one
obtains
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A0k is the derivative of Ak with respect to the slow time scale T1,
and n is positive integer. Express Ak in polar form

Ak ¼
1

2
akeibk (17)

where ak and bk are real and represent the amplitude of the reso-
nator’s motion and its phase relative to excitation, respectively.
Substituting Eq. (17) into Eq. (15) and separating the real and
imaginary parts, the amplitude–phase differential equations result
as follows:
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where

ck ¼ rT1 � bk (20)

Steady-State Solutions. The steady-state solutions result from
substituting a0k ¼ c0k ¼ 0 into Eqs. (18) and (19). Zero-amplitude
steady-state ak ¼ 0 is solution for all values of the detuning
parameter r. The nonzero amplitude steady-state solutions, the
amplitude–frequency response, are as follows:

a2
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2g1kk

C4g3kk

2xkb�

sin 2ck

� C2

 �
(21)
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g1kk
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k

	 

cos 2ck

4xk

(22)

Steady-state solutions for uniform MEMS cantilever are showed
(graphed) in a later section, namely Numerical Solutions for Uni-
form MEMS Resonators.

Reduced Order Model (ROM) Method

It is showed afterward that the Casimir effect is negligible for
MEMS resonators (a ¼ 0, Tables 1 and 2) in the case of uniform
resonators. Therefore, the model is solved using ROM with a ¼ 0.
For a given frequency and initial amplitude, the time response of
the system is found, and consequently the steady-state amplitude
for the considered frequency is obtained. Several such steady-
state points (amplitude–frequency) are to be determined and
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consequently the frequency–amplitude response of the structure
using ROM [11,25,26,32] found. ROM is a Galerkin procedure in
which the solution is assumed to be

uðz; sÞ ¼
XN

k¼1

ukðsÞukðzÞ (23)

where the number of terms N is finite, ukðzÞ are the mode shapes
of the MEMS resonator and form a basis of functions, and ukðsÞ
are time dependent functions to be found. The mode shapes in
Eq. (23) are reported in the literature [11,25,26,28]. When
constructing a ROM, the treatment of the excitation force is very
important. Exact form of the forcing function must be used to
numerically solve the equations of motion accurately [11,33].
Erroneous results were produced when the forcing function was
Taylor expanded up to third power. In addition, the number of
terms in Eq. (23) must be at least N ¼ 3 for the solutions to con-
verge [11,25,26,33]. To implement this procedure (ROM), Eq. (2)
is multiplied by ð1� uÞ2 to eliminate any displacement terms u
from appearing in the denominator, and Eqs. (13) and (23) are
substituted into the result. Notice that a ¼ 0. Multiplying by
unðzÞ, and integrating the resulting equation from z ¼ 0 to 1, the
ROM of the system results as follows:
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0

undz� f dV2ðsÞun (24)

where n ¼ 1; 2; :::;N. Equation (24) is a system of N
nonexplicit coupled, second-order nonlinear ordinary-differential
equations.

Numerical Solutions for Uniform MEMS Resonators

Steady-state analytical solutions by MMS, Eqs. (21) and (22),
give the amplitude–frequency and phase–frequency responses.
ROM is used to: (1) investigate the time response of the system
and test the results obtained using MMS at small amplitudes and
(2) predict the behavior of the resonator for larger amplitudes. AC
near first natural frequency of MEMS resonator is considered in
these numerical simulations.

Uniform Resonator Characteristics. Uniform MEMS cantile-
vers are considered. Their mode shapes, natural frequencies, and
coefficients, Eqs. (12,13) are reported in the literature [11,25,26].
Table 1 gives values of the physical characteristics of a typical
microbeam [11,25,26]. Dimensionless parameters given by
Eq. (4) are given in Table 2. Substituting the values of the dimen-
sionless parameters and g coefficients, given by Eq. (16), into
Eqs. (21) and (22), the steady-state frequency–amplitude response
for a uniform cantilever is obtained in the case of first mode of
vibration.

Casimir Effect Negligible at MEMS Scale. The influence of
the Casimir force, even though present in the model, does not
influence the behavior of the system at the microscale level.
Table 2 shows that the Casimir effect parameter a is eight orders
of magnitude smaller than the other parameters. For all practical
purposes, a ¼ 0. Casimir force is significant for gap distances less
than one micrometer. Figure 2 shows the change of the dimen-
sionless parameters Eq. (4) as the system is scaled down to nano-
meter scale. The gap width g is chosen as a scaling factor since
the Casimir force depends on it. The other dimensions of the reso-
nator scale proportionally with the gap. Geometric scaling shows
that a varies inversely to the gap to the fourth power g�4, whereas
the electrostatic excitation (voltage) parameter d varies inversely
to the gap squared g�2. Included are the electrostatic force param-
eters at 0.1 V and 0.5 V. Casimir parameter has same order of
magnitude as the electrostatic parameter as the gap distance
decreases to 200 nm, which is in agreement with Ref. [6]. If one
wants to keep d constant while scaling down the resonator, the
voltage reduces accordingly (Table 3).

Steady-State Solutions. The steady-state solutions given by
Eqs. (21) and (22) are parametric equations (parameter c). They
give the amplitude–frequency and phase–frequency responses for
uniform MEMS cantilever resonators, Figures 3(a) and 3(b),
respectively, where r is the detuning dimensionless frequency,
Eq. (7) for e¼ 1, Umax is the dimensionless amplitude of the tip of
the cantilever, Umax ¼ a � u 1ð Þ, Eqs. (12), (17), and (21), and c is
the phase difference between the response and the excitation. For
the first mode of vibration, u 1ð Þ ¼ 2. The steady-state solutions
consist of zero-amplitude steady-state solutions (on r-axis) and

Table 1 Physical characteristics of a typical microbeam

Parameter Symbol Value

Beam width W 20 lm
Beam length ‘ 300 lm
Beam thickness h 2.0 lm
Initial gap distance g 8.0 lm
Material density q 2330 kg/m3

Young’s modulus E 169 GPa
Quality factor Q 350
Peak AC voltage V0 12.5 V

Table 2 Dimensionless parameters

Dimensionless parameter Symbol Value

Casimir effect a 2.9� 10�9

Amplitude of excitation (voltage) d 0.10
Fringe correction f 0.26
Damping coefficient b* 0.01

Fig. 2 Influence of scaling on dimensionless parameters a and
d with respect to the gap g
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two branches of nonzero-amplitude steady-state solutions, one sta-
ble—solid line branch, and the other one unstable—dash branch.
To test the stability of steady-state solutions, one uses the Jaco-
bian of Eqs. (21) and (22). For real eigenvalues, one positive and
the other negative, the fixed point is a saddle point, which is unsta-
ble (the solution diverges) [34], and is located on the dashed line.

The two branches in Fig. 3(a) show a softening effect (they are
bent to the left, to lower frequencies). The zero-amplitude steady-
state solutions exist for all values of frequency detuning parameter
r. These solutions are unstable between the branches,
�0:0224 ¼ rB � r � rC ¼ �0:0098, and stable elsewhere. Two
distinct Hopf bifurcations, one subcritical (point B) and the other
one supercritical (point C), are shown. The results are similar to
those reported for a parametrically excited comb drive [35] and
for nonlinearly coupled micromechanical oscillators [36]. The
dimensionless amplitude Umax never exceeds unity, i.e., ampli-
tudes cannot be larger than the gap.

Stable solutions are reached as follows. If (1) r > rC

¼ �0:0098, then only zero-amplitude steady-state solutions are
reached regardless the initial amplitude, (2) �0:0224 ¼ rB � r
� rC ¼ �0:0098, then only nonzero stable steady-state ampli-
tudes and/or pull-in phenomenon are reached regardless the initial
amplitude, and (3) r < rB ¼ �0:0224, then zero amplitude is
reached if the initial amplitude is below the unstable branch, and
pull-in phenomenon occurs if the initial amplitude is above the
unstable branch. The phase of nonzero amplitudes (Fig. 3(b)) is
between 1.3 and 1.4 rad. Figure 3(c) shows the ROM time
response for r ¼ �0:015. Resonator tip reaches a steady-state am-
plitude of Umax ¼ 0:6 from initial amplitude U0 ¼ 0:01. A good
agreement between the two methods, MMS and ROM, is found
for amplitudes less than 0.5 of the gap. ROM, Eq. (24), was trans-
formed into a system of 2N first-order differential equations and
integrated using MATLAB function ode15s.

Discussion and Conclusions

Nonlinear dynamics of electrostatically actuated MEMS reso-
nators with AC near natural frequency, resulting in parametric res-
onance, is investigated in this paper. MEMS cantilever is modeled
as Euler–Bernoulli beam. The actuation forces are electrostatic,
first-order fringe effect, and Casimir. Due to AC voltage, paramet-
ric coefficients are found in both linear and nonlinear terms of the
governing equation of motion. Nonlinearities arise from electro-
static force and Casimir effect. Casimir effect is negligible at
microscale.

Two methods, MMS and ROM, are used in this investigation.
“An analytical approach, such as the MMS, allows for a better
insight of the dependence of the system on its various parameters,
and has the ability to predict interesting phenomena [11].”
Approximate analytical techniques require the least amount of
computational time and effort, however, at larger amplitudes are
the less accurate and cannot predict the behavior of the resonator
and pull-in instability as showed afterward [11,25,26]. Despite
this, they are very useful in understanding the underlying physics
of systems behavior, predicting primary, sub- and super-harmonic
resonances, and finding how system’s parameters influence its
behavior. In this investigation, MMS is directly applied to the par-
tial differential equation of motion in order to find the steady-state
solutions. However, MMS is valid only for weak nonlinearities
and small to moderate amplitudes. ROM method, a Galerkin pro-
cedure, is used to numerically solve the differential equation of
motion. ROM is valid for weak and/or strong nonlinearities and

small and/or large amplitudes [11,14,25,26,36]. ROM with two,
three, four, and five terms are used. The main drawback of ROM
method is that resonant zones are not obvious. Using an analytical
method such as MMS in conjunction with a numerical method
such as ROM allows for identifying the resonance zones and also
the behavior of the structure for small and large amplitudes [11].
Another available analytical technique is the method of harmonic
balance. We preferred not to use this technique. The downsize of

Table 3 Excitation voltages at different scales such that d 5 0:1

Geometric scaling factor [g] (m) Working voltage V0 (V)

10�6 12.5
10�7 1.2
10�8 0.12

Fig. 3 Frequency response of the uniform MEMS resonator for
AC near first natural frequency using MMS and ROM. The solid
and dashed lines are solutions from the MMS representing sta-
ble and unstable points, respectively. Parameters values
used are a 5 0, d 5 0:1, f 5 0:26, and b�5 0:01. (a) Amplitude–
frequency response using MMS and ROM. The points showed
are steady-states using ROM, two terms (diamonds), three
terms (circles), four terms (triangles), and five terms (squares).
A and B are points where pull-in is predicted using the four and
five term ROMs. C is the bifurcation point of the supercritical
Hopf bifurcation. (b) Phase–frequency response using MMS,
and (c) time response of the tip of a uniform cantilevered reso-
nator for r 5 � 0:015 using the five term ROM method.
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this method is that one needs “to know a great deal about the solu-
tion a priori or to carry enough terms in the solution and check the
order of the coefficients for all neglected harmonics [37].”

Figure 3(a) shows a comparison between the ROM and MMS
predictions for frequency–amplitude response. Both methods are
in agreement for dimensionless amplitudes less than 0.5. They
predict same frequency of the Hopf bifurcation point C and a rela-
tively small difference in the frequency of the Hopf bifurcation
point B, regardless the number of terms in ROM. They also pre-
dict the same steady-state stable solutions. For amplitudes larger
than 0.5, MMS and ROM solutions are different. This is expected
since MMS is valid for small amplitudes. For large amplitudes
MMS fails, it overestimates the nonzero stable steady-state ampli-
tudes (branch AC for ROM). Conversely, ROM is able to make
accurate predictions including pull-in instability [11,25,26,33]
point A (r ¼ �0:018, Umax ¼ 0:7) if five terms are used. The
increased accuracy of ROM comes at a cost of increased computa-
tional time. If one is only concerned with modeling general sys-
tem behavior for small to moderate amplitudes, then MMS is
suitable. Figure 3(b) shows the phase–frequency response. In
Fig. 3(c), one can see the time response using five terms ROM.
Figures 3(a) and 3(c) are in agreement.

Figure 4 illustrates the effect of damping on the frequency
response. As the damping increases, the distance between points
B and C decreases until the stable and unstable branches coalesce
in one branch (for b� ¼ 0:016), and then the resulting branch
moves to higher amplitudes. The zero amplitude solutions are
unstable between points B and C (b� < 0:016) and stable else-
where. If b� > 0:016, the zero amplitude steady-state solutions are
stable at any frequency since points B and C do not exist. Nonzero
amplitude stable solutions such as those of case b� ¼ 0:016,
Fig. 4(a), cannot be reached just by frequency sweeps with zero
initial amplitude. An external perturbation giving initial ampli-
tudes above the unstable solutions (dashed line) is required to
reach nonzero amplitudes or pull-in. For a given frequency in the
interval �0:013 < r < �0:01, the larger the damping, the lower
the nonzero steady-state amplitude (Fig. 4(a)). This is in good
agreement with Fig. 4(c) which shows ROM results for zero initial
amplitude U0 ¼ 0:0 and r ¼ �0:013. As the damping increases,
the time in which steady-state is reached decreases. Figure 4(b)
shows that damping alters the phase response significantly.

Figure 5 illustrates the effect of the excitation parameter d on
the frequency response. The excitation factor d has a major influ-
ence on the amplitude–frequency response (Fig. 5(a)). As d
increases from 0.06 to 0.2: (a) the d ¼ 0:06 branch of the nonzero
unstable steady-state solutions shifts to lower frequencies and
lower amplitudes until it becomes tangent to the r� axis, (b) then
the curve splits into two distinct branches, one stable and the other
one unstable as for d ¼ 0:1, (c) the gap between the two distinct
branches, as d ¼ 0:1 increases to d ¼ 0:2, increases as well (oppo-
site to the damping influence), (d) the branches show an increase
in the softening effect, and (e) both branches continue to shift to
lower frequencies. The gap between the two branches (between B
and C) consists of unstable solutions; therefore, the gap increase
results into a wider range of frequencies for which pull-in phe-
nomenon occurs regardless the initial amplitude. As d increases,
the interval rA;rCð Þ of resonant frequencies, when the resonator
operates at nonzero steady-state amplitudes, broadens. In conclu-
sion, an increase in the excitation force (voltage) broadens the
range of frequencies for which the resonator becomes unstable,
broadens the range of frequencies for which nonzero resonant
amplitudes occur, and lowers the frequency at which resonance
phenomena occur. For example, for r ¼ �0:012, the resonant
steady-state amplitudes Umax are 0.6 and 0.0, for the values of
d ¼ 0:1 and d ¼ 0:2, respectively. Hence, larger amplitudes occur
at smaller excitation parameter values. Figure 5(b) shows no sig-
nificant influence of d on the phase–frequency response. There is
a good agreement between Figs. 5(a) and 5(c) which shows the
five terms ROM time response for r ¼ �0:012, and d ¼ 0:1 and
d ¼ 0:2. Both models predict a reduction in amplitude with the

increase in voltage. Just recently two papers regarding frequency
response of electrostatically actuated MEMS cantilever resonators
[45] and single wall carbon nanotube (CNT) [46], “using AUTO
07P software package for continuation and bifurcation problems
is then used to numerically solve the system of equations,” [45],
have been reported in the literature.

Figure 6 shows the influence of the fringe effect parameter f on
the system. As the fringe parameter increases, the stable and
unstable branches are shifted to lower frequencies and the unsta-
ble region between branches (between points B and C) widens
(Fig. 6(a)). Since the value of the fringe effect parameter depends
on the gap to width ratio, Eq. (4), the fringing effect is more
important for narrow beam resonators. The fringe effect enhances
the electrostatic force widening the unstable region between
branches. Fringe effect does not have a significant influence on
the phase response (Fig. 6(b)). Figure 6(c) shows the five term

Fig. 4 Influence of the dimensionless damping parameter b�

on the frequency response. The parameters used are a 5 0,
d 5 0:1, and f 5 0:26. (a) Amplitude–frequency response using
MMS, (b) Phase–frequency response using MMS, and (c)
time response using ROM for r 5 � 0:013 and initial amplitude
U0 5 0.
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ROM time response and a good agreement with Fig. 6(a). Fringe
effect included shows a smaller value than if neglected. Therefore,
neglecting the fringe effect in estimates the contribution of the
electrostatic force for narrow beam elements.

This paper falls in the category of analytical investigation and
numerical simulations MEMS [1,9,11,14,18,24–27,38–41]. The
results of this work are in good agreement with experimental data
reported in the literature [42,43]. Both Refs. [42,43] reported a
softening effect and Hopf bifurcations for MEMS cantilever para-
metric resonance.

As application, the proposed MEMS resonator can be used as
microbalance, i.e., mass sensing device. As the mass of the
MEMS resonator increases due to mass deposition, the frequency
of the subcritical Hopf bifurcation, point B in Fig. 3(a), is shifted

to lower values. This shift in frequency predicts the amount of
mass added to the MEMS [43,44]. Similarly, bifurcation point C
and pull-in instability point A are shifted to lower frequencies due
to mass deposition. Just recently two papers regarding frequency
response of electrostatically actuated MEMS cantilever resonators
[45] and single wall CNT [46], “using AUTO 07P software pack-
age for continuation and bifurcation problems is then used to
numerically solve the system of equations,” [45], have been
reported in the literature.

The limitations of this investigation are: (1) the use of Palmer
formula for fringe effects which is not accurate for much narrower
electrostatically actuated beams [37]. However, Caruntu et al.
[25,26] showed the validity of Palmer formula for the investigated
microbeam. (2) This work does not include experimental valida-
tion, which makes the object of future investigation.

Fig. 5 Influence of the dimensionless excitation parameter d
on the frequency response. The parameters used are a 5 0,
f 5 0:26, and b�5 0:01. (a) Amplitude–frequency response using
MMS, (b) phase–frequency response using MMS, and (c) time
response using ROM for r 5 � 0:015 and initial amplitude
U0 5 0.2; as the excitation increases, the steady-state amplitude
increases.

Fig. 6 Influence of the fringe correction f on the frequency
response. The parameters used are a 5 0, d 5 0:1, and b�5 0:01.
(a) Amplitude–frequency response using MMS, (b) phase–
amplitude response using MMS, and (c) time response using
ROM for r 5 � 0:013 and initial tip displacement is U0 5 0; as
the fringe correction parameter increases, the steady-state
amplitude increases
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