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Abstract This paper deals with electrostatically actu-
ated carbon nanotube (CNT) cantilever over a parallel
ground plate. Three forces act on the CNTs cantilever,
namely electrostatic, van der Waals, and damping. The
van der Waals force is significant for values of 50 nm
or less of the gap between the CNT and the ground
plate. As both forces electrostatic and van der Waals
are nonlinear, and the CNTs electrostatic actuation is
given by AC voltage, the CNT undergoes nonlinear
parametric dynamics. The methods of multiple scales
and reduced order model (ROM) are used to investigate
the system under soft AC near half natural frequency
of the CNT and weak nonlinearities. The frequency–
amplitude response and damping, voltage, and van der
Waals effects on the response are reported. It is showed
that only five terms ROM predicts and accurately pre-
dicts the pull-in instability and the saddle-node bifur-
cation, respectively.
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1 Introduction

Since the discovery of Sumio Iijima [1] in 1991, car-
bon nanotubes (CNTs) became one the most widely
investigated and used nano-structures. Their excel-
lent and unique properties are worth the attention
and research efforts. Several applications based on
CNTs have been reported in chemistry [2–5], medicine
[6–9], and mechanical engineering [10–13]. Depend-
ing on the structure of CNTs, there are two categories:
single-walled carbon nano tubes (SWCNTs) [14] and
multi-walled CNTs (MWCNTs) [15]. Pull-in insta-
bility in micro-electromechanical (MEMS) resonators
and characteristics of the pull-in phenomenon in the
presence of alternating current (AC) and direct cur-
rent (DC) loads have been investigated [16]. Reduced
order model (ROM) method has been used to simu-
late the dynamic behaviors of MEMS resonators and
switches. A comprehensive nonlinear model of an elec-
trostatically actuated clamped-clamped beam, includ-
ing mechanical and electrostatic nonlinearities, valid up
to displacements comparable to the gap that has been
reported in the literature [17]. Mestrom et al. [18] inves-
tigated clamped–clamped beam resonator’s response
for various parameters. He obtained a good agreement
between numerical and experiment results. Conley et
al. [19] investigated the nonlinear dynamics of elec-
trostatically actuated SWCNT resonators. It has been
showed that DC bias voltages have a significant impact
on the behavior of the system. They did not only tune
the linear natural frequency, but also alter the qual-
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itative nature of system’s nonlinear response. Ouakad
and Younis [20–22] reported on the variation of the nat-
ural frequency and mode shapes of clamped–clamped
CNTs and focused on the forced vibration problem of
CNTs actuated by AC and DC voltages. They showed
that (1) transfer of energy among the vibration modes is
involved in the veering phenomenon [20], the quadratic
nonlinearity due to slack has a dominant effect on the
dynamic behavior of the CNT [21], and subharmonic
resonances are activated over a wide range of frequen-
cies [22]. Pratiher [23] presented a study of stability and
bifurcation control of ideal electrostatically actuated
MEMS system. The method of multiple scales (MMS)
[24] has been employed. Jia et al. [25] utilized ROM to
transform the partial differential equations of motion
into a system of ordinary differential equations and
investigate the resonance frequency response of homo-
geneous and non-homogeneous micro-switches under
Casimir force and applied voltage. Caruntu and Knecht
[26] reported the influence of nonlinear behaviors from
parametric electrostatic excitation and Casimir effect
on the response of MEMS cantilevers with AC near
half natural frequency. Investigations of primary res-
onance of other structures such as plates under elec-
trostatic actuation are reported in the literature, Vogl
and Nayfeh [27]. Regarding sensors, Kim and Lee [28]
investigated nonlinear resonances of CNT with a tip
mass using one-term ROM, and Nayfeh et al. [29]
reported on nonlinear dynamics of resonant gas sen-
sors. Linear and/or nonlinear beam models have been
reported in the literature by Crespo da Silva and Glynn
[30], Luongo et al. [31], and Luongo and Zulli [32].
Micro-/nano-structures for atomic force microscopy
have been reported by Hornstein and Gottlieb [33], and
Rega and Settimi [34].

In this paper, the frequency response of cantilever
SWCNTs under AC electrostatic actuation near half
natural frequency of the CNT is investigated. This
results in primary resonance of the structure. CNTs are
modeled as Euler–Bernoulli cantilevers. The electro-
static and van der Waals forces between the CNT and
a parallel ground plate are soft and nonlinear. More-
over, the electrostatic force is also parametric since
periodic coefficients are present in its expression. The
amplitude–frequency response and influences of para-
meters are reported. To the best of our knowledge, this
is the first time when the frequency response and effects
of damping, voltage, and van der Waals forces on the
response of CNT cantilevers under soft AC near half

natural frequency (primary resonance), and a direct
comparison between MMS and ROM, are reported.
This work must be of interest to nanoelectromechanical
systems (NEMS) investigators.

2 Differential equation of motion

The partial differential equation describing the motion
of the CNT is given as follows, Fig. 1:

ρ A
∂2 y

∂t2 + E I
∂4 y

∂x4 = −b
∂y

∂t
+ felec + fvdw, (1)

where y is the deflection of the CNT; t is time; x is the
longitudinal coordinate; and ρ, A, b, E , and I are the
density, cross-section area, damping coefficient, Young
modulus, and cross-section moment of inertia, respec-
tively. The forces acting on the CNT are at the right-
hand side of Eq. (1), and they are damping, electro-
static felec, and van der Waals fvdw. Because of the
nano-scale of the structure, air is taken into account
as a mechanical and viscous damper; therefore, the
damping force is proportional to the deflection veloc-
ity. The electrostatic and van der Waals forces [35] are
as follows:

felec = πε0V 2
AC

R
√( r

R

)2 + 2r
R · log2

[
1 + r

R +
√( r

R

)2 + 2r
R

]

(2)

fvdw = C6σ
2
0 π2 R

√
r (r + 2R)

2r5 (r + 2R)5

[
8r4 + 32r3 R

+72r2 R2 + 80r R3 + 35R4
]
, (3)

where the AC voltage is given by VAC = V0 cos �t . V0

and � are the amplitude and circular frequency of the
AC voltage, respectively. The constants ε0, σ0, and C6

are permittivity of vacuum, graphite surface density,
and a constant characterizing the interaction between
two atoms [35,36]. These constants are given in Table
1. The relationship of the distances in Fig. 1 and Eqs.
(2) and (3) is given as follows:

r = g − R − y, (4)

where g is the gap distance between the CNT and
ground plate, Fig. 1; r is the current distance between
the CNT and the ground plate; R is the outer radius of
the CNT; and y is the CNT deflection.
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Table 1 Constants [35]

Symbol Description Value (unit)

ε0 Permittivity of vacuum 8.85*1012C2/N/m2

C6 Material constant 2.43*1078Nm7

σ Graphite surface density 3.8*1019 m−2

E Young modulus 1.2*1012 N/m2

y

r g

Ground plate 

VAC 

Fig. 1 CNT cantilever under electrostatic, damping, and van der
Waals forces

3 Dimensionless equation of motion

The following dimensionless variables are considered:

w = y

g
; z = x

�
; τ = t

�2

√
E I

ρ A
. (5)

They are w, z, and τ dimensionless deflection, dimen-
sionless longitudinal coordinate, and dimensionless
time, respectively. Substituting Eq. (5) into Eq. (1),
one obtains the boundary value problem (to include
the boundary conditions) is as follows:

⎧
⎪⎪⎨
⎪⎪⎩

∂2w

∂τ2 + b∗ ∂w

∂τ
+ ∂4w

∂z4 = δ f elec cos2 �∗τ + μ f vdw

w(τ, 0) = ∂w

∂z
(τ, 0) = ∂2w

∂z2 (τ, 1) = ∂3w

∂z3 (τ, 1) = 0
.

(6)

Dimensionless damping b∗, dimensionless excitation
(voltage) parameter δ, dimensionless actuation fre-
quency �∗, and dimensionless van der Waals force
parameter μ are given by

b∗ = b�2

√
ρ AE I

, δ = πε0�
4V 2

0

E Ig2

�∗ = ��2

√
ρ A

E I
, μ = C6σ

2
0 π2 R�4g4

2E Ig10 . (7)

The dimensionless electrostatic force f elec and van der
Waals force f vdw in Eq. (6) are given by

f elec =
[
(1 − w)2 − s2

]− 1
2

log−2

⎛
⎝1 − w

s
+

√
(1 − w)2

s2 − 1

⎞
⎠ (8)

f vdw =
[
(1 − w)2 − s2

]− 9
2
[
8 g4 (1 − w − s)4

+32g4 (1 − w − s)3 s

+72 g4 (1 − w − s)2 s2

+80 g4 (1 − w − s) s3 + 35 g4s4
]
, (9)

where s = R/g

4 Method of multiple scales

The MMS is used to investigate the behavior of the
system. Equations (8) and (9), and electrostatic and
van der Waals forces are approximated using the first
four terms of their Taylor expansions as follows:

f elec (w) =
3∑

k=0

αkw
k, f vdw (w) =

3∑

k=0

λkw
k . (10)

Substituting Eq. (10) into Eq. (6), one obtains

∂2w

∂τ 2 + b∗ ∂4w

∂τ
+ ∂4w

∂z4

= μ

3∑

k=0

λkw
k + δ

3∑

k=0

αkw
k cos2 �∗τ. (11)

The system is considered to have small damping coef-
ficient b∗, small electrostatic excitation δ, and small
van der Waals parameter μ. Therefore, Eq. (11) can be
written as follows:

∂2w

∂τ 2 + εb∗ ∂w

∂τ
+ ∂4w

∂z4

= εμ

3∑

k=0

λkw
k + ε δ

3∑

k=0

αkw
k cos2 �∗τ, (12)

where ε is a bookkeeping device. Consider a first-order
expansion of the deflection w and fast and slow time
scales T0, T1 as follows:

w = w0 + εw1, T0 = τ, T1 = ετ, (13)

123
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where w0, and w1 are the zero-order and first-order
approximation problems’ solutions. The time deriv-
ative is then expressed in terms of derivatives with
respect to the fast and slow scales

d/dτ = D0 + εD1, Di = d/dTi , i = 0, 1. (14)

Substituting Eqs. (13, 14) into Eq. (12) and equate the
terms of like powers of ε, one obtains the zero-order
problem ε0 and first-order problem ε1 as follows:

ε0 : D2
0w0 + ∂4w0

∂z4 = 0 (15)

ε1 : D2
1w1 + ∂4w1

∂z4 = −2D0 D1w0 − b∗ D0w0

+ f
3∑

k=0

αkw
k cos2 (

�∗τ
) + μ

3∑

k=0

λkw
k . (16)

The solution of the boundary value problem associated
to the zero-order problem Eq. (15) is given by

w0 = φk(z)
(

Aeiωk T0 + Āe−iωk T0
)

, (17)

where φk is the mode shape and A is a complex ampli-
tude (depending on T1 the slow time scale) to be deter-
mined. The kth dimensionless natural frequency ωk and
the corresponding mode shape of the uniform cantilever
[26,37,38] are given by

ωk = ωk�2
√

ρ A

E I
, φk (z) = cosh

(√
ωk x

) − cos
(√

ωk x
)

−ck
(
sinh

(√
ωk x

) − sin
(√

ωk x
))

, (18)

where ωk is the dimensional natural frequency. The first
five dimensionless natural frequencies and mode shape
coefficients are given in Table 2. Substituting Eq. (17)
into Eq. (16), it results in

D2
1w1 + ∂4w1

∂z4

= −2
(

A′eiωk T0 ± Ā′e−iωk T0
)

(iωk) φk

Table 2 First five dimensionless natural frequencies and mode
shape coefficients for CNTs

k = 1 k = 2 k = 3 k = 4 k = 5

ωk 3.51602 22.0345 61.70102 120.91202 199.85929

ck −0.734 −1.0185 −0.9992 −1.00003 −1.00000

−b∗ (
Aeiωk T0 − Āe−iωk T0

)
(iωk) φk

+ δ

4

(
e2i�∗T0 + 2 + e−2i�∗T0

)

[
α0 + α1φk

(
Aeiωk T0 + Āe−iωk T0

)

+α2φ
2
k

(
A2e2iωk T0 + 2 ĀA + Ā2e−2iωk T0

)

+α3φ
3
k

(
A3e3iωk T0 + 3A2 Āeiωk T0 + 3 Ā2 Ae−iωk T0

+ Ā3e−3iωk T0
)]

+μ
[
λ0 + λ1φk

(
Aeiωk T0 + Āe−iωk T0

)

+λ2φ
2
k

(
A2e2iωk T0 + 2 ĀA + Ā2e−2iωk T0

)

+λ3φ
3
k

(
A3e3iωk T0 + 3A2 Āeiωk T0 + 3 Ā2 Ae−iωk T0

+ Ā3e−3iωk T0
)]

. (19)

Solvability condition for Eq. (19) requires the right-
hand side of this equation to be orthogonal to the solu-
tions of the homogeneous equation. Therefore, multi-
plying the right-hand side of Eq. (19) by φk and inte-
grate from 0 to 1, one obtains

−2iωk g1kk(A′eiωk t0 − Ā
′
e−iωk t0) − ib ∗ ωk g1kk

×(Aeiωk t0 − Āe−iωk t0)

+ δ

4

(
e2i�∗T0 + e−2i�∗T0 + 2

)

[
α0g0kk + α1g1kk × (Aeiωk t0 + Āe−iωk t0)

+α2g2kk(A2e2iωk t0 + 2AĀ + Ā2e−2iωk t0)

+α3g3kk(A3e3iωk t0 + 3A2 Āeiωk t0 + 3AĀ2e−iωk t0

+ Ā3e−3iωk t0)
]

+μ
[
λ0g0kk + λ1g1kk(Aeiωk t0 + Āe−iωk t0)

+λ2g2kk(A2e2iωk t0 + 2AĀ + Ā2e−2iωk t0)

+λ3g3kk(A3e3iωk t0 + 3A2 Āeiωk t0 + 3AĀ2e−iωk t0

+ Ā3e−3iωk t0)
]

= 0, (20)

where

gikk =< φi
k, φk >=

1∫

0

φi+1
k (z) dz. (21)

The secular terms (eiωk T0 ) are eliminated from Eq. (20),
resulting
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−2iωk g1kk A′ − ib ∗ ωk g1kk A

+ δ

4
· 2

[
α1g1kk A + 3α3g3kk A2 Ā

]

+μ
[
λ1g1kk A + λ3g3kk A2 Ā

]

+“other secular terms′′ = 0 (22)

The given terms in Eq. (22) come from all terms in
Eq. (25) except the ones multiplied by e2i�T0 +e−2i�T0 .
The “other secular terms” come from the terms result-
ing from multiplying the first bracketed expression of
Eq. (19) by e2i�T0 +e−2i�T0 . This multiplication leads
to

δ

4

{
α0g0kk(e

2i�T0 + e−2i�T0 ) + α1g1kk(Aei(ωk+2�)T0

+Aei(ωk−2�)T0 + Āe−i(ωk−2�)T0 + Āe−i(ωk−2�)T0 )

+α2g2kk

(
A2e2i(ωk+�)T0 + 2AĀe2i�T0 + Āe−2i(ωk−�)T0

+ A2e2i(ωk−�)T0 + 2AĀe−2i�T0 + Ā2e−2i(ωk+�)T0
)

+α3g3kk

[
A3ei(3ωk+2�)T0 + 3A2 Āei(ωk+2�)T0

+3AĀ2e−i(ωk−2�)T0 + Ā3e−i(3ωk−2�)T0

+A3ei(3ωk−2�)T0 + 3A2 Āei(ωk−2�)T0

+3AĀ2e−i(ωk+2�)T0 + Ā3e−i(3ωk+2�)T0
]}

= 0. (23)

The “other secular terms” from among the the terms
of expression (23) are to be found in the next section,
where the AC frequency is considered near half natural
frequency of the CNT structure.

5 AC near half natural frequency actuation

The frequency of AC actuation is near half natural fre-
quency � ∼= ωk/2. This can be written as

� = ωk

2
+ εσ, (24)

where σ is a detuning parameter and �T0 = ωk T0/2+
σ T1. One can notice from Eqs. (20) and (24) that
although AC is near half natural frequency, the fre-
quency of the electrostatic force is near natural fre-
quency, which results into primary resonance. In this
case, the “other secular terms” from among the terms
of expression (23) are given by

δ

4

(
α0 + α2g2kk2 ĀA

)
e2i�∗T0 + δ

4

(
α2g2kk A2

)

×e−2i�∗T0+2iωk T0 , (25)

including the other secular terms given by Eq. (25) into
Eq. (22); the solvability condition for primary reso-
nance (AC near half natural frequency) becomes

−2A′ (iωk) g1kk − b∗ A (iωk) g1kk

+ δ

2

(
α1 Ag1kk + α3g3kk3A2 Ā

)

+μ
(
λ1 Ag1kk + λ3g3kk3A2 Ā

)

+ δ

4

(
α2g2kk A2

)
e−2i�∗T0+2iωk T0

+ δ

4

(
α0 + α2g2kk2 ĀA

)
e2i�∗T0 = 0. (26)

Consider the complex amplitude A as follows:

A = 1

2
aeiβ, (27)

where a is a real amplitude and β is the phase. Substi-
tuting Eqs. (24) and (27) into Eq. (26), it results

−2

(
1

2
a′eiβ + 1

2
aeiβ iβ ′

)
(iωk) g1kk

−b∗ 1

2
aeiβ (iωk) g1kk

+ δ

2

(
α1

1

2
aeiβg1kk + α3g3kk

3

8
a3eiβ

)

+μ

(
λ1

1

2
aeiβg1kk + λ3g3kk

3

8
a3eiβ

)

+ δ

4

(
α2g2kk

1

4
a2

)
e2iβ−iσ T1

+ δ

4

(
α0g0kk + α2g2kk

1

2
a2

)
eiσ T1 = 0 (28)

Dividing Eq. (28) by eiβ , one obtains

(−a′ − aiβ ′) (iωk) g1kk − b∗ 1

2
a (iωk) g1kk

+ δ

2

(
α1

1

2
ag1kk + α3g3kk

3

8
a3

)

+μ

(
λ1

1

2
ag1kk + λ3g3kk

3

8
a3

)

+ δ

16

(
α2g2kka2

)
eiβ−iσ T1

+ δ

4

(
α0g0kk + α2g2kk

1

2
a2

)
eiσ T1−iβ = 0 (29)

A new variable γ is considered as follows:

γ = σ T1 − β (30)
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The real and imaginary parts are set to zero in Eq. (29).
Therefore, the phase–amplitude equations describe the
behavior of the system when the AC frequency is near
half natural frequency (primary resonance) of the res-
onator and they are given by

a′ = −b∗

2
a + δ

ωk

(
α2

g2kk

g1kk

1

16
a2 + α0

1

4

g0kk

g1kk

)
sin γ

(31)

γ ′ = σ + δ

ωk

(
α1

1

4
+ α3

g3kk

g1kk

3

16
a2

)

+ μ

ωk

(
λ1

1

2
+ λ3

g3kk

g1kk

3

8
a2

)

+ δ

ωk
α2

g2kk

g1kk

1

16
a cos γ

+ δ

ωk

(
α0

4

g0kk

g1kka
+ α2

g2kk

g1kk
a

1

8

)
. (32)

The steady-state solutions
(
a′ = γ ′ = 0

)
in this case

result from Eqs. (31) and (32) as follows:

a = 2

b∗
δ

ωk

(
α2

g2kk

g1kk

1

16
a2 + α0

1

4

g0kk

g1kk

)
sin γ (33)

σ = − δ

ωk

(
α1

1

4
+ α3

g3kk

g1kk

3

16
a2

)

− μ

ωk

(
λ1

1

2
+ λ3

g3kk

g1kk

3

8
a2

)

− δ

ωk
α2

g2kk

g1kk

1

16
a cos γ

δ

ωk

(
α0

4

g0kk

g1kka
+ α2

g2kk

g1kk
a

1

8

)
. (34)

6 Reduced order model method

In order to use ROM method, the Taylor expansions of
Eqs. (8) and (9) are given in the denominators. There-
fore, Eq. (6) becomes

∂2w

∂τ 2 + b∗ ∂w

∂τ
+ ∂4w

∂z4 = δ cos2 �∗τ
7∑

k=0
akwk

+ μ

7∑
k=0

bkwk

.

(35)

The ROM solution of Eq. (35) is assumed as:

w =
N∑

j=1

u j (τ ) φ j (z) , (36)

where u j is the j th variable depending on time, N is
the number of the ROM terms, and φ j is the j th mode

shape of the cantilever. Multiplying Eq. (35) by the
denominators of electrostatic force and van der Waals
force, and using Eq. (36) and the following equations

∂2w

∂τ 2 =
N∑

j=1

ü j (τ ) φ j (z) ,
∂w

∂τ
=

N∑

j=1

u̇ j (τ ) φ j (z) ,

∂4w

∂z4 =
N∑

j=1

ω2
j u j (τ ) φ j (z) , (37)

then Eq. (35) becomes
⎛
⎝a0b0 +

7∑

p=1

p∑

i=1

aiλp−i

N∑

j1, j2,..., j (p−i)

u j1u j2....u j (p−i)

×φ j1φ j2...φ j (p−i) +
7∑

p=1

7∑

i=p

ai b7+p−i

N∑

j1, j2,..., j (p+7)

u j1u j2....u j (p+7)φ j1φ j2...φ j (p+7)

⎞
⎠ ·

⎛
⎝

N∑

n, j

ü jφnφ j + b∗
N∑

n, j

u̇ jφnφ j +
N∑

n, j

ω2
j u jφnφ j

⎞
⎠

=
7∑

p=0

(
apδ cos2 �∗τ + μbp

)

N∑

n, j1, j2,..., j p

u j1u j2...u jpφnφ j1φ j2...φ j p. (38)

Multiplying Eq. (38) by φn (τ ) on both sides, integrat-
ing the equation from 0 to 1, and using the orthonor-
mality property given by

1∫

0

φnφ j dz =
{

0 n �= j
1 n = j

, (39)

the ROM ordinary differential equations result as fol-
lows:⎛
⎝a0b0gn +

7∑

p=1

p∑

i=1

ai bp−i

N∑

n, j1, j2,..., j (p−i)

u j1u j2....

u j (p−i)hn, j1, j2,..., j (p−i) +
7∑

p=1

7∑

i=p

ai b7+p−i

×
N∑

j1, j2,..., j (p+7)

u j1u j2....u j (p+7)hn, j1, j2,..., j (p+i)

⎞
⎠·
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⎛
⎝

N∑

j1

ü j1 + b∗
N∑

j1

u̇ j1 +
N∑

j1

ω2
j1u j1

⎞
⎠

=
7∑

p=0

(
apδ cos2 �∗τ + μbp

)

×
N∑

n, j1, j2,..., j p

u j1u j2...u jphn, j1, j2,... j p (40)

where n = 1,2,…,N, and

hn, j1, j2,..., j p =
1∫

0

φnφ j1φ j2...φ j pdz (41)

7 Numerical simulations

Numerical simulations have been conducted using
MMS and ROM method. A comparison between the
two methods is discussed, and conclusions are drawn.
The ROM system of non-explicit-coupled differential
equations given by Eqs. (40) has been solved using
AUTO 07P a continuation and bifurcation software for
ordinary differential equations. Meanwhile, the results
of two (2T), three (3T), four (4T), and five (5T) terms
ROM are also compared and showed to indicate con-
vergence of the ROM. Table 3 gives the dimensional
parameters of the system. With these parameters, the
dimensionless parameters are calculated and presented
in Table 4. Taylor coefficients of Eqs. (10) and (35) are
given in Tables 5 and 6.

Figure 2 shows the amplitude–frequency response
of CNTs under AC near half natural frequency, which
results in primary resonance, using MMS and 5T
ROM. Four terms of Taylor expansions in the numer-
ators are used for MMS, and seven terms of Taylor
expansions in denominators are used in the ROM in

Table 3 Dimensional parameters of the system

Symbol Description Value (unit)

� Length of CNT 200*10−9 m

R CNT radius 10−9 m

Rint CNT inner radius 0.665*10−9 m

g Gap CNT - plate 20*10−9 m

Voltage applied 32*10−3 V

Table 4 Dimensionless system parameters

Symbol Description Value

δ Electrostatic parameter 0.1902

μ Van der Waals parameter 0.0005

b∗ Damping parameter 0.001

Table 5 Taylor expansion coefficients of electrostatic force and
van der Waals force, Eq. (10)

Symbol Value Symbol Value

α0 0.0839 λ0 0.0839

α1 0.1321 λ1 0.1321

α2 0.1779 λ2 0.1779

α3 0.2244 λ3 0.2244

Table 6 Denominator Taylor expansion coefficients of the elec-
trostatic force and van der Waals force, Eq. (35)

Symbol Value Symbol Value

a0 13.586202 b0 0.1226795

a1 −20.99676 b1 −0.617992

a2 4.6816821 b2 1.2429685

a3 1.2246554 b3 −1.247656

a4 0.5279667 b4 0.6249998

a5 0.2830802 b5 −0.125001

a6 0.15756904 b6 −0.00000049

a7 0.10349291 b7 −0.00000044
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Fig. 2 Amplitude–frequency response AC near half natural fre-
quency using MMS and seven terms denominator Taylor expan-
sion. b∗ = 0.001, δ = 0.1902, and μ = 0.0005 ( shows the
bifurcation point at low amplitudes, and the pull-in point at high
amplitudes).
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order to conserve singularities. In the horizontal axis is
σ the detuning dimensionless frequency, and in the ver-
tical axis is Umax the amplitude of the tip of the CNT,
which is the amplitude of Eq. (36) for the ROM, and
the amplitude of Eq. (17) for MMS, both for z = 1.
The ROM response shows three branches. The sta-
ble branches are showed using solid lines, and unsta-
ble branches using dash lines. When the frequency is
swept up, the amplitude Umax of CNTs increases along
branch 1 until the CNTs cantilever reaches the bifurca-
tion point A, where a jump phenomenon occurs. The
amplitude jumps upto branch 3. As the frequency con-
tinues to be swept up, the amplitude decreases along
branch 3. When the frequency is swept down, the ampli-
tude becomes larger until it reaches point B at a value
of 0.98 (of the gap) at a value of the detuning parame-
ter of −0.15. At this point, the CNT becomes unstable
and goes into pull-in (contact with the ground plate).
Comparing MMS and ROM, one can notice an excel-
lent agreement between MMS and ROM for amplitudes
less than 0.35 (of the gap). For larger amplitudes, MMS
fails to predict the frequency response of the CNT.
Caruntu et al. [37,38] showed that the ROM makes
better predictions than MMS for high amplitudes for
MEMS resonators. One can notice, Fig. 2, the strong
softening effect in high amplitudes of the CNT pre-
dicted by ROM. MMS fails to accurately predict (1)
the amplitude of the bifurcation point (0.41 by MMS
and 0.34 by ROM), (2) the frequency at which pull-in
occurs as sweeping down the frequency (−0.006 by
MMS and −0.15 by ROM), and (3) the strong soften-
ing effect that allows for large amplitudes for detuning
frequency between −0.15 and 0.

8 Discussion and conclusions

In what follows the convergence of the ROM method
and influences of parameters are to be discussed.
Figure 3 illustrates the convergence of the ROM
method. The number of terms considered in the ROM
method are two, three, four, and five. One can notice
the convergence of the method. As the number of the
terms increases, (1) ROM better captures the strong
softening (branches bent to the left) effect present in
the frequency response of the electrostatically actuated
CNT, and (2) the amplitude of the bifurcation point
increases to 0.38. The number of terms in the ROM
does not affect the predictions below an amplitude of
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Fig. 3 ROM convergence of the amplitude–frequency response;
ROM 2T, 3T, 4T and 5T. b∗ = 0.001, δ = 0.1902, μ = 0.0005
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Fig. 4 Damping b∗ influence on amplitude–frequency response.
δ = 0.1902 and μ = 0.0005

0.35. However, the behavior for larger amplitudes can-
not be accurately predicted unless the number of terms
in the ROM is five. Only five terms ROM captures the
pull-in instability point B, which occurs at an amplitude
of 0.98 and a detuning frequency of −0.15.

Figure 4 illustrates the influence of dimensionless
damping coefficient b∗ on the frequency response. As
the damping increases from 0.0001 to 0.008, point B
disappears becoming just a decreasing amplitude peak,
preventing the system to reach pull-in. The damping
parameter does not have a significant influence on the
bifurcation frequency for the range of damping values
considered.

Figure 5 shows the influence of dimensionless elec-
trostatic force parameters on the frequency response.
As the electrostatic parameter δ is increasing, the fre-
quency of the bifurcation point A decreases, and its
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Fig. 5 Voltage parameter δ influence on amplitude–frequency
response. b∗ = 0.001, μ = 0.0005, while δ = 0.2973 (40 mV),

δ = 0.1902 (32 mV), δ = 0.0917 (20 mV)
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Fig. 6 van der Waals parameter μ influence on amplitude–
frequency response. δ = 0.1902, b∗ = 0.001

amplitude increases. No significant differences are
noticed for the amplitude of pull-in instability point
B (0.98 amplitude). As the electrostatic parameter
increases, the pull-in frequency of point B slightly
decreases from −0.148 to −0.152.

Figure 6 illustrates the influence of the dimension-
less van der Waals force parameter μ on the frequency
response. As the parameter increases, (1) the soften-
ing effect becomes more significant (the branches are
more bent to the left), (2) the bifurcation point A shifts
to lower frequencies and amplitudes, and (3) the pull-in
point B amplitude and frequency decrease.

Next, a discussion regarding the model and methods
used in this work follows. Casimir force is not included
in this model because it is not present for such small

gaps as in this work. Casimir force and van der Waals
force cannot act at the same time since they describe
the same physical phenomenon at different scales (gap
values) [39]. While van der Waals force models the
phenomenon for gaps below 50 nm, Casimir force acts
for gaps between 200 nm and 1 µm. In between is a
transition between van der Waals force and Casimir
force.

In this work, (a) Euler–Bernoulli continuum beam
model [22,35,40–46] and (b) continuum van der Waals
theory [35] for CNT resonators have been used. “Con-
tinuum models are fast and reasonably accurate for
modeling and simulation” [35]. An excellent review
of CNT resonators has been reported in the liter-
ature [42]. Other methods of investigation of nan-
otubes include 3D space-frames structures [40], nonlo-
cal continuum mechanics (small-scale effect) [43], and
molecular dynamics simulations [35]. Euler–Bernoulli
model is appropriate for slender structures. If slender-
ness (length to diameter ratio) is greater than 20, then
between CNT fundamental frequencies using Euler–
Bernoulli beam theory and Timoshenko beam the-
ory (including rotary inertia and shear deformation)
is no difference [41]. Fundamental frequency is a key
property of the CNT resonator; Timoshenko theory is
more accurate than Euler–Bernoulli for short beams
and higher modes [42]. Also, based on the concept
of equivalent Euler–Bernoulli beam (equivalent rigidi-
ties), it has been reported that “the behavior of the
nanotubes is length-independent except for very small
lengths [40].” This was based on 3D space-frames CNT
structure model. Euler–Bernoulli theory was found in
good agreement with atomistic (molecular dynamics)
simulations for slenderness greater than 10, Ref. [35].
It has been also reported that small-scale effect (non-
local continuum mechanics) is not significant on the
fundamental frequency for slender CNTs [43]. Classi-
cal Euler–Bernoulli fundamental frequency was found
valid for slenderness greater than 20; “classical contin-
uum models are still valid and convenient for studying
vibration response of long CNTs for low modes” [43].
Continuum van der Waals theory used in this paper is
in perfect agreement with the discrete Lenard–Jones
potential theory. This had been showed using molecu-
lar dynamics simulations [35].

MMS is limited to weakly nonlinear systems and
small amplitudes [21,26,37,38,47,48]. In this paper,
we only discussed the MMS first-order uniform expan-
sion [26,37,38,44,45] of the solution since MMS is
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a perturbation method, in which “the first few steps
reveal the important features of the solution and the
remaining ones give small corrections,” i.e., “one may
calculate just few terms in a perturbation series” [49].
Regardless, the order of the MMS expansion, first-
order [26,37,38,44,45], Eq. (13), or second- or third-
order expansions [21], MMS fails to predict the fre-
quency response for large amplitudes.

This paper falls in the category of analytical inves-
tigation and numerical simulations [20–22,28,29,35,
39–41,43–48,50]. The results of this work are in good
agreement with data reported in the literature [28,50]
which showed a softening effect (saddle-node bifurca-
tion in the lower frequency branch) of the primary res-
onance of electrostatically actuated CNTs. Yet, [28,50]
included a significantly larger DC voltage than AC volt-
age, and the results were presented in dimensional form
[50] rather than dimensionless which would be more
general and used only one-mode approximation [28]
rather than five-mode approximation which would be
more accurate.

To the best of our knowledge, the present work
reports for the first time a direct comparison between
MMS and five terms ROM for the primary resonance
of CNT cantilevers under soft AC electrostatic actu-
ation to include the effects of damping, voltage, and
van der Waals forces. It is showed that the increase
of van der Waals effect results in the decrease of the
amplitude and the frequency of the saddle-node bifur-
cation and the pull-in instability, Fig. 6. It is also showed
that only five terms ROM captures both the saddle-
node bifurcation and pull-in instability of the system,
Fig. 3.

The limitations of this paper are as follows. First, the
results are valid for slender CNT with a length to diam-
eter ratio greater than 100 since the Euler–Bernoulli
beam theory is used. Second, it does not include an
experimental investigation which will be a future direc-
tion of research.
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