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a b s t r a c t

This paper deals with parametric resonance of microelectromechanical (MEMS) cantilever resonators
under soft damping, and soft alternating current (AC) electrostatic actuation to include fringing effect.
A comparison between the Reduced Order Model (ROM) method and the Method of Multiple Scales
(MMS) for both small and large amplitudes is reported. The actuation is parametric non-linear. It
includes non-linear terms with periodic coefficients. The AC frequency is near resonator's natural
frequency. The amplitude frequency response is investigated using ROM. Damping, voltage, and fringe
effects on the response are also reported. It is showed that five terms ROM accurately predicts the
behavior of the resonator at all amplitudes, while MMS is accurate only for small amplitudes.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Microelectromechanical systems (MEMS) gathered much atten-
tion in the past decades. Used as sensors and actuators, they are
small in size, light weight, low in energy consumption and highly
durable [1], and can be produced at a low cost, which makes their
commercialization attractive. They can be utilized as switches,
signal routing, filters, and sensors with various applications [2–5].
MEMS are inherently nonlinear. Nonlinearities usually arise from
electrostatic actuation, large deformations in the structure, and
squeeze film damping [6,7]. Electrostatic actuation is a frequent
method used to drive miniaturized devices. This is due to its
simplicity and low energy consumption [8,9]. A microbeam is
deflected by direct current (DC) electrostatic load, and driven to
vibrate by alternating current (AC) harmonic load [10]. Electrosta-
tically actuated microbeam model consists of an elastic beam
suspended over a ground plate. Both are made of conductive
materials and a dielectric medium fills the gap between them (air
gap) [11]. As the input voltage reaches a critical value, the elastic
beam spontaneously deflects and collapses onto the ground plate.
This behavior is known as pull-in instability and it is an important
phenomenon considered in MEMS design [12,13].

Several groups investigated the dynamic behavior of MEMS. The
behavior of arch resonators actuated electrically, modeled as
clamped–clamped arches suspended over a ground plate, has been
reported in the literature [14,15]. In Ref. [16] the non-linear
response of cantilever beams to combination and subcombination
resonances has been investigated using the Method of Multiple
Scales (MMS). It has been found that as the frequency is swept up,
the trivial solution exhibits a sudden jump as the system undergoes
a subcritical pitchfork bifurcation. The beams have been assumed to
have large length-to-width aspect ratios and thin rectangular cross-
sections. A nonlinear clamped–clamped model of an electrostati-
cally resonator that uses a perturbation method to predict a
microbeam response to primary, superharmonic and subharmonic
excitations has been reported [17]. Yet, the fringe effect has not
been included. However, none of the papers mentioned reported a
thorough comparison between results obtained via perturbation
methods and numerical techniques for MEMS cantilever resonators
to include fringe effect and soft Alternating Current (AC) actuation.
The only papers reported in the literature in this respect are Refs.
[18–20]. Yet, they investigated primary resonance.

This paper reports, to the best of our knowledge for the first time,
a comparison between Reduced Order Model (ROM) method and the
Method of Multiple Scales (MMS) for parametric resonance of MEMS
cantilever resonators under soft AC actuation including fringe effect.
The model of the resonator is developed using Euler–Bernoulli
hypothesis. The non-linearities in the system arise from both
electrostatic force and fringe effect. ROM, which is based on the
Galerkin procedure, is used to develop a system of non-explicit
ordinary differential equations. AUTO 07P software package for
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continuation and bifurcation problems is then used to numerically
solve the system of equations, and obtain the amplitude–frequency
response of the resonator. The influences of non-linearities resulting
from parametric electrostatic excitation on the frequency amplitude
response are reported.

2. Differential equation of motion

The dimensionless boundary value problem of electrostatically
actuated MEMS resonators, Fig. 1, is as follows [18–20]:
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where z, τ, and u¼u(z,τ) are the dimensionless longitudinal
coordinate, dimensionless time, and dimensionless beam deflec-
tion, respectively, and they are given by the following equations:

z¼ x=ℓ ; τ¼ 1
ℓ2

ffiffiffiffiffiffiffiffi
EI0
ρA0

s
t ; u¼w=g ð2Þ

In Eqs. (2) x, t, and w¼w(x,t) are the dimensional longitudinal
coordinate, dimensionless time, and dimensionless beam deflec-
tion, respectively. Geometrical, inertial, and material properties in
Eq. (2) are given by beam length ℓ, gap g, reference cross-section
area and moment of inertia A0 and I0, respectively (if uniform
resonator), Young's modulus E, and density ρ. For nonuniform
cantilevers the reference cross-section could be where the cross-
section area is maximum [21–24]. The dimensionless cross section
area An and moment of inertia In, Eq. (1), are given by An ¼ A=A0,
In ¼ I=I0, where A and I are the corresponding dimensional
quantities. The forces per unit length, which are at the right hand
side of Eq. (1) are first damping, second electrostatic, and third
fringe effect. The dimensionless parameters at the right hand side
of Eq. (1) are given by the following equations:

bn ¼ b
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℓ4

ρA0EI0

s
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2g3EI0
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s
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where bn is the dimensionless damping coefficient, δ is the
dimensionless voltage coefficient, f is the dimensionless fringe
coefficient for electrostatic force correction, Ωn the dimensionless
frequency of excitation, V0 is the reference voltage (amplitude), W
is the beam width, b is the coefficient of viscous damping per unit
length, and ε0 ¼ 8:854� 10�12 C2N�1m�2 permittivity of free
space. It is assumed that the resonator will operate in a viscous

pressure regime [20], therefore viscous damping force is used in
this investigation. The applied voltage is given by V(t)¼V0V(τ)
where V(τ) is the dimensionless voltage.

3. Parametric resonance of uniform MEMS cantilevers

In the case of uniform cantilever resonators the dimensionless
cross section area An and moment of inertia In from Eq. (1) are both
equal to 1, Refs. [18–20]. Therefore, the boundary value problem of
the electrostatically actuated uniform MEMS resonators is given by
the following equation:
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This investigation considers soft AC actuation, small damping, and
small fringe effect, i.e. parameters δ; bn; f are small. Soft AC is the
voltage that produces soft electrostatic forces in the system, i.e. it
produces small to very small amplitudes with respect to the gap for
the MEMS cantilever resonator when the frequency of excitation is
away from resonance zones. The dimensionless voltage is given by

VðτÞ ¼ cos Ωnτ ð5Þ

The AC frequency Ωn is near natural frequency Ωn �ωk, which is
written as follows:

Ωn ¼ωkþs ð6Þ

where s is a detuning parameter and ωk is the natural frequency.
One can notice that the dimensionless electrostatic force to include
the fringe effect, at the right hand side of Eq. (4), is proportional to
the square of the voltage, therefore proportional to the square of the
cosine function of Eq. (5). Since cos 2Ωnτ¼ ð cos 2Ωnτþ1Þ=2, the
frequency of the excitation force is a number of times greater than
the natural frequency, therefore the resulting resonance is subhar-
monic. Moreover, since the frequency of the excitation force 2Ωn is
nearly twice the natural frequency ωk, the subharmonic resonance
is parametric resonance. The Method of Multiple Scales (MMS) has
been used to investigate the frequency response of the structure
[25]. In what follows, ROM is used to investigate the dynamics of
the MEMS cantilever resonators. A comparison between the two
methods, namely ROM and MMS, is reported.

4. Reduced order model

A system of non-explicit ordinary differential equations is devel-
oped to model the frequency response of the parametric resonance
of electrostatically actuated uniform MEMS cantilever resonators
using ROM. This method, based on the Galerkin procedure, uses
the undamped linear mode shapes of the cantilever beam as the
basis functions [18–20]. The solution is assumed as follows:

uðz; τÞ ¼ ∑
N

k ¼ 1
ukðτÞϕkðzÞ ð7Þ

where N is the number of terms, ukðτÞ are the time dependent
coefficients, ωk are the natural frequencies, and φkðzÞ are the
corresponding set of linear undamped mode shapes of the uniform
cantilever beam given by the following equation [18–20]:

ϕkðzÞ ¼ �f cos ð ffiffiffiffiffiffi
ωk

p
zÞ� coshð ffiffiffiffiffiffi

ωk
p

zÞþCk sin ð ffiffiffiffiffiffi
ωk

p
zÞ� sinhð ffiffiffiffiffiffi

ωk
p
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Fig. 1. Uniform MEMS cantilever resonator.
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satisfying

uð4Þ ¼ ∑
N

k ¼ 1
ukϕ

ð4Þ
k ¼ ∑

N

k ¼ 1
ω2
kukϕk ð9Þ

and the orthonormality conditionZ 1

0
ϕkϕpdz¼ δkp ¼

0 ; kap

1 ; k¼ p

(
ð10Þ

The first five natural frequencies ωk and coefficients Ck from Eq. (8)
are given in Table 1. In order to implement the ROM method the
following steps are considered. Eq. (4) is multiplied by ½1�uðτ; zÞ�2
(to eliminate any displacement uðz; τÞ from appearing in the denomi-
nator [18–20]). Eq. (7) is then substituted into it, and the resulting
equation is multiplied by mode shape φnðzÞ and integrated from z¼0
to 1, n¼ 1;2;…N. This leads to a system of N second order coupled
differential equations in time as follows
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where n¼1,2,…N.

5. Numerical simulations

The system of N second order differential Eqs. (11) is trans-
formed into a system of 2N first order differential equations which
is then integrated for four cases N¼2, N¼3, N¼4, and N¼5 using
AUTO 07P, a software package for continuation and bifurcation
problems [26], which provides both stable and unstable steady-
state solutions. In AUTO the computation of periodic solutions to a
periodically forced system are done by adding a nonlinear oscil-
lator with the desired periodic forcing as one of the solution
components [26]. The frequency–amplitude response of the sys-
tem near natural frequency is investigated using from two to five
terms ROM. Table 2 gives the dimensions and the properties of the
MEMS cantilever resonator used for numerical simulations. Table 3
gives the dimensionless parameters, Eq. (3), calculated with the
data from Table 2.

Fig. 2 shows the parametric resonance frequency amplitude
response of the MEMS resonator sensor using ROM, and a direct
comparison with the method of multiple scales [25]. Solid and dash
lines represent stable and unstable steady-state solutions, respec-
tively. For both five term (5T) ROM and MMS the frequency–
amplitude response consists of two nonzero steady state branches,
namely branch 1, and branch 2, and zero steady state solutions
branch showed as horizontal line along s-axis. The response
consists of two Hopf bifurcations, subcritical with the bifurcation
point at A, and supercritical with the bifurcation point at B. For five
terms ROM, the unstable branch 2 of the subcritical bifurcation
divides the area into two distinct regions. For initial amplitudes

below the dash line the system settles to zero amplitudes, while for
initial amplitudes above the dash line the resonator is pulled-in
(makes contact with the ground plate) or settles to large ampli-
tudes. For a frequency less than the frequency of point C, the MEMS
resonator settles to zero amplitude for any initial amplitude. When
the frequency is swept up, the amplitude remains zero along the
zero branch until reaches the bifurcation point A. At this point a
sudden jump to higher amplitude, about 0.8 of the gap in Fig. 2,
occurs. As the frequency continues to be swept up, the amplitude
decreases along branch 1 until reaches bifurcation point B of zero
amplitude, and continues to remain zero. When the frequency is
swept down, the amplitude is zero until it reaches bifurcation point
B. At this point the amplitude increases continuously until reaches
point D when the MEMS resonator is pulled-in (contact of the
MEMS cantilever with the ground plate, which corresponds to a
dimensionless amplitude of 1, i.e. dimensional amplitude equals the
gap). One can notice that for amplitudes less than 0.5 of the gap, the
ROM and MMS [25] are in perfect agreement. For amplitudes larger
than 0.5 of the gap MMS [25] fails to predict the behavior of the
system. It underestimates the softening effect (bending to the left of
the nonzero branches), and does not predict the pull-in phenom-
enon from large amplitudes, point D. More importantly, MMS [25]
fails to predict branch 2 which shows a significant region for initial
amplitudes above it fromwhere MEMS resonators undergo a pull-in
phenomenon or settle to high amplitudes.

6. Discussion and conclusions

MEMS cantilever resonators in this research are modeled as
Euler–Bernoulli beams. No non-linearities arise from the structure

Table 1
First five natural frequencies and mode shape coefficients for uniform cantilever.

k¼1 k¼2 k¼3 k¼4 k¼5

ωk 3.51562 22.0336 61.70102 120.91202 199.85929
Ck �0.734 �1.0185 �0.9992 �1.00003 �1.00000

Table 2
Dimensional system parameters.

Beam width W 20 µm
Beam length ‘ 300 µm
Beam thickness h 2.0 µm
Initial gap distance g 8.0 µm
Material density ρ 2330 kg/m3

Young's modulus E 169 GPa
Quality factor Q 350
Peak AC voltage V0 12.5 V

Table 3
Dimensionless system parameters.

Damping coefficient bn 0.01
Amplitude of excitation δ 0.10
Fringe correction f 0.26
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Fig. 2. Amplitude–frequency response, parametric resonance, using five terms (5T)
ROM (present work) and MMS [25], bn¼0.01, δ¼0.1 and f¼0.26.
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itself. The electrostatic force, including first-order fringe correc-
tion, actuating the resonator induces parametric nonlinear reso-
nances. Parametric coefficients are found in both linear and
nonlinear terms within the governing equation.

The ROM method in AUTO 07P is used to investigate the
behavior of the system. ROM is able to accurately capture the
behavior of the system where MMS [25] cannot [17], namely for
moderately and large deflections up to the pull-in instability limit.
Using three or more modes guarantees the convergence of the
steady state amplitude [18–20]. In this work, for the frequency
amplitude response of parametric resonance, it is also reported:
(1) ROM convergence, Fig. 3, (2) influence of dimensionless
damping, Fig. 4, (3) influence of dimensionless voltage parameter,
Fig. 5, and (4) influence of the dimensionless fringe parameter,
Fig. 6.

Fig. 3 shows the convergence of the ROM method in the case of
frequency–amplitude response. The convergence is showed by
increasing the number of terms from N¼2 to N¼5 in the ROM. As
can be noted, the change becomes less significant with the
addition of terms. Numerical simulations conducted in this
research demonstrate that four or more terms are required for
the ROM to predict pull-in, and that the five-term ROM predicts
more accurately the pull-in phenomenon. One can notice that as
the number of ROM terms increases, the softening effect of the
MEMS resonator is better captured and points C and D better
predicted. The softening effect consists of frequency decrease as
the amplitude of oscillation increases.

Fig. 4 illustrates the effect of the dimensionless damping
parameter bn on the frequency–amplitude response of the reso-
nator using a five term ROM (present work) and MMS [25]. As the
damping increases the bifurcation point B and the pull-in instabil-
ity point D are shifted to lower frequencies. The shifting of point D

is much more significant. Conversely, bifurcation point A and point
C are shifted to higher frequencies. One can notice that increasing
the damping reduces the range of frequencies for which the
resonator potentially undergoes large amplitudes or pull-in phe-
nomenon (the range of frequencies between point C and B
reduces). Also the range of frequencies for which the resonator
undergoes nonzero amplitudes regardless the initial amplitude
reduces (the range between bifurcation points A and B). Interest-
ingly, with the increase in damping the range of frequencies for
which the resonator settles to nonzero amplitudes increases
(range between points B and D).

Fig. 5 shows the influence of the voltage parameter δ on the
amplitude frequency-amplitude response of the MEMS resonator.
As the voltage increases the subcritical bifurcation point A is
shifted significantly to lower frequencies, while the supercritical
bifurcation point B is not significantly shifted in any way. One can
notice that the range of frequencies (between points A and B) for
which the resonator settles to nonzero amplitudes from any initial
amplitude, increases. Also as the voltage increases the range of
frequencies (between points C and B) for which the resonator can
potentially (depending on the initial amplitude) reach pull-in or
nonzero amplitudes decreases. Increasing the voltage has an
inverse effect on the pull-in instability point D than increasing
the damping. As the voltage increases point D is shifted to higher
frequencies reducing the range of frequencies (between points B
and D) of nonzero amplitudes.

Fig. 6 illustrates the effect of the fringe coefficient, f, on the
frequency response. Fringing fields emanating from the lateral
and top surfaces of the deformable beam need to be accounted
for when modeling the electrostatic field. For wide beams with
beam width to air gap ratio greater than 1.5, the fringing fields
are usually neglected [27]. Increasing the fringe coefficient
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Fig. 3. ROM convergence for amplitude–frequency response using two, three, four
and five terms ROM, bn¼0.01, δ¼0.1 and f¼0.26.
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Fig. 4. Damping bn influence on the amplitude–frequency response using five
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(decreasing the width of the cantilever for the same gap distance)
from a value of 0.26 to 0.5 shifts to lower frequencies the
subcritical bifurcation point A, and point C. It also shifts to larger
frequencies the pull-in instability point D, and does not have a
significant influence on the supercritical bifurcation point B. The
increase in fringe coefficient has the same effect as increasing the
voltage parameter, except the range of frequencies (between
points C and B) for which the resonator potentially reaches
(depending on the initial amplitude) pull-in or nonzero ampli-
tudes. This range increases with the increase of the fringe
coefficient while it was decreasing with voltage increase. One
can notice that if the fringe effect is neglected f¼0 then the
supercritical bifurcation point B is not affected, but the frequen-
cies of all others points A, C, and D are not correctly predicted.
Ignoring the fringe effect results in higher frequency of the
subcritical bifurcation point A, lower frequency of point D, and
higher frequency of point C. This leads to erroneous ranges of
frequencies for (1) nonzero amplitudes (between frequencies of
points B and D), (2) pull-in and nonzero amplitudes (between
points B and C), and (3) nonzero amplitudes from any initial
amplitude (between points A and B).

In conclusion when comparing MMS and ROM, although
accurate for small amplitudes, MMS fails to accurately predict
the behavior of the resonator for large amplitudes. If five terms are
used, the ROM method is able to accurately predict the behavior of
the MEMS resonator for all amplitudes. Also, the use of the AUTO
07P provides accurately the pull-in instability point D and the
lower frequency of the unstable branch, point C, of the subcritical
bifurcation.

The results of this paper are valid for (1) MEMS cantilevers of
width to thickness ratio greater than five, and gap to thickness
ratio greater than two [18,19,27] since Palmer formula for electro-
static force is used, and (2) Euler–Bernoulli cantilevers (thickness
to length ratio greater than hundred). Future directions of research
include the effects of imperfections, and noise on the response of
the structure.

Practical implications of this paper are: (1) more sensing
information can be acquired by using the two bifurcation points
A and B and the pull-in instability point D in Fig. 2 by sweeping up
and down the frequency, (2) there is a significant range of
frequencies, between points B and C, for which, if enough large
initial amplitude (above branch AC), the system reaches high
amplitudes or pull-in, and (3) if zero initial amplitude and fixed
frequency, then pull-in phenomenon does not occur, Fig. 2.
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