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This paper uses the reduced order model (ROM) method to investigate the nonlinear-
parametric dynamics of electrostatically actuated microelectromechanical systems
(MEMS) cantilever resonators under soft alternating current (AC) voltage of frequency
near half natural frequency. This voltage is between the resonator and a ground plate
and provides the actuation for the resonator. Fringe effect and damping forces are
included. The resonator is modeled as a Euler-Bernoulli cantilever. ROM convergence
shows that the five terms model accurately predicts the steady states of the resonator for
both small and large amplitudes and the pull-in phenomenon either when frequency is
swept up or down. It is found that the MEMS resonator loses stability and undergoes a
pull-in phenomenon (1) for amplitudes about 0.5 of the gap and a frequency less than
half natural frequency, as the frequency is swept up, and (2) for amplitudes of about 0.87
of the gap and a frequency about half natural frequency, as the frequency is swept down.
It also found that there are initial amplitudes and frequencies lower than half natural fre-
quency for which pull-in can occur if the initial amplitude is large enough. Increasing the
damping narrows the escape band until no pull-in phenomenon can occur, only large
amplitudes of about 0.85 of the gap being reached. If the damping continues to increase
the peak amplitude decreases and the resonator experiences a linear dynamics like
behavior. Increasing the voltage enlarges the escape band by shifting the sweep up bifur-
cation frequency to lower values; the amplitudes of losing stability are not affected.
Fringe effect affects significantly the behavior of the MEMS resonator. As the cantilever
becomes narrower the fringe effect increases. This slightly enlarges the escape band and
increases the sweep up bifurcation amplitude. The method of multiple scales (MMS) fails
to accurately predict the behavior of the MEMS resonator for any amplitude greater than
0.45 of the gap. Yet, for amplitudes less than 0.45 of the gap MMS predictions match per-
fectly ROM predictions. [DOI: 10.1115/1.4023164]

1 Introduction

Microelectromechanical systems (MEMS) have received signif-
icant attention over the last decades due to their prevalence in a
wide range of applications. Small in size, low in weight and
energy consumption, these systems are highly durable, making
them preferred candidates for a vast array of devices, including
accelerometers, relays, RF switches, filters, and sensing applica-
tions such as mass flow and chemical sensors, biosensors, immu-
nosensors, or detectors capable of identifying the presence of
proteins or DNA strands [1–11]. A MEMS affinity sensor that
enables continuous monitoring of glucose for diabetes manage-
ment, for instance, has been reported in literature [7]. The princi-
ple is based on the detection of viscosity changes due to affinity
binding between glucose and a biocompatible, glucose-specific
polymer. In the case of DNA sensors [11], the principle is based
on the detection of the resonance frequency shift induced by the
specific DNA immobilization on the resonator. Although various

actuation methods for MEMS devices exist, electrostatic actuation
is still the most preferred mode of actuation due to its simplicity
and efficiency. It provides significant force without requiring the
use of special actuation materials and can be controlled through
an electric supply which consumes a low amount of energy [12].
In a micro resonator, the electric load is composed of a direct cur-
rent (DC) polarization voltage and an AC voltage; the beam is
deflected by the DC component and then driven to vibrate around
its natural frequency by the AC harmonic load [13, 14]. When the
combined input voltage exceeds a threshold value, called pull-in
voltage, the flexible micro-beam spontaneously deflects and col-
lapses onto the rigid plate, causing the device to fail. This is
known as pull-in instability and is a basic instability phenomenon
considered in design [15]. Nonlinearity plays a major role at the
micron scale; it usually arises from sources, such as squeeze-film
damping, electrostatic actuation, large deflections (geometric non-
linearities), and intermolecular forces such as Casimir or van der
Waals [16] present at submicron scales. The minimization of
damping is an essential requirement in the design of micro resona-
tors, which constitutes a major factor of energy dissipation in such
systems [17]. The AC voltage produces an electrostatic force,
which is nonlinear and parametric, exciting the MEMS resonator.
Understanding the nature of parametric excitations is of general
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interest. Parametric excitations can be used to design devices,
such as mass sensors, microscopy probes, filters, and resonators.
The stability of such systems and the types of nonlinearities that
occur are highly sensitive to physical parameters, initial ampli-
tude, and excitation frequency. It is then important to identify
bifurcation parameters and bifurcation points in order to design
and control systems under parametric excitation. The nonlinear
dynamics of clamped-clamped microbeams has been reported in
the literature [18, 19]; yet, the fringe effect was not included [18],
ROM versus MMS was not investigated, the case of AC soft exci-
tations only has not been considered. Also, nonlinear dynamic
response of comb drives [20] has been reported in the literature.
Comb drives have been modeled as one-degree-of-freedom sys-
tems. Perturbation analysis has been used to find the frequency
response. A certain AC voltage has been used to provide the
harmonic excitation.

This paper investigates the dynamics of MEMS cantilever
(clamped-free) resonator sensors under soft AC voltage of fre-
quency near half natural frequency. This is a nonlinear-parametric
excitation. As the electrostatic force is proportional to the square
of the voltage, the electrostatic force actuates the cantilever in its
primary resonance zone. The ROM method is used to solve the
differential equation of motion describing the system. The equa-
tion of motion is developed using the Euler-Bernoulli hypothesis
of thin beams. The frequency-amplitude response of the MEMS
resonator is predicted. Two-term, three-term, four-term, and five-
term ROMs are numerically solved using AUTO 07P to predict
the amplitude-frequency response curves. A comparison ROM
versus MMS [21] is included. To the best of our knowledge, this
is the first time when a comparison between ROM and MMS is
conducted to investigate MEMS cantilever resonators under soft
AC voltage of frequency near the resonator’s half natural frequency
(resulting in primary resonance) and to include the fringe effect.

2 Differential Equation of Motion

Figure 1 shows an electrostatically actuated MEMS cantilever
resonator that consists of a deformable electrode suspended over a

ground plate. The boundary value problem of the system is given
by [21]
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where t is time, x is the longitudinal coordinate, ‘ is the beam
length, w¼w(x,t) is the transverse deflection of the beam, E is the
Young’s modulus, I(x) is the moment of inertia of the beam’s
cross section, Fe is the electrostatic force per unit length, and Fd is
the damping force per unit length. First order fringing correction
[21] is considered such that the electrostatic force per unit length
Fe along the beam is

Fe t; xð Þ ¼ e0W
2

VðtÞ2
g� w t; xð Þ½ �2 1þ 0:65

g� w t; xð Þ½ �
W

� �
(2)

where e0 ¼ 8:854� 10�12C2N�1m�2 is the permittivity of free
space, W is the beam width, g is the initial gap between the beam
and ground electrode, and V(t) is the applied voltage. Damping
force per unit length is given by

Fd t; xð Þ ¼ b
@w t; xð Þ

@t
(3)

where b is a coefficient of viscous damping per unit length. The
viscous damping force is used, and it is assumed that the resonator
will operate in a viscous pressure regime [21].

3 Dimensionless Equation

Dimensionless variables are as follows:

u ¼ w=g; z ¼ x=‘; s ¼ 1

‘2

ffiffiffiffiffiffiffiffi
EI0
qA0

s
� t (4)

where u¼ u(z,t), z and s are dimensionless beam transverse
deflection, dimensionless longitudinal coordinate, and dimension-
less time, respectively. Also, A0 and I0 are reference cross-section
area and reference cross-section moment of inertia. For uniform
structures they are the cross-section area and moment of inertia of
the cantilever. For nonuniform cantilevers the reference cross-
section could be where the cross-section area is maximum
[22,23]. The dimensionless boundary value problem results as
follows:
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where the dimensionless cross section area A� and moment of
inertia I� are given by

A� ¼ A=A0 I� ¼ I=I0 (6)

and A and I are the dimensional quantities. For uniform beams A�
and I� are equal to 1. The dimensionless voltage VðsÞ in this
investigation is considered as follows:

VðsÞ ¼ cosX�s (7)

Fig. 1 Uniform MEMS resonator
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The dimensionless parameters in Eqs. (5) are given by
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where b� is the dimensionless damping coefficient, d is the dimen-
sionless amplitude of the electrostatic excitation force, f is associ-
ated with a fringing correction to the electrostatic force, X� the
dimensionless frequency of excitation, and V0 the amplitude of
the AC voltage.

4 Resonance for X � xk=2

The frequency of the AC voltage is near half the natural fre-
quency, X� � xk=2. The nearness of the excitation frequency can
be written as

2X� ¼ xk þ r (9)

where r is a detuning parameter. Substituting Eqs. (7) and (9) into
Eq. (5), it results in
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One can notice that although the frequency of the AC voltage is
near half natural frequency, the frequency of the excitation force
is near natural frequency; notice the cosine in Eq. (10). This is
nonlinear-parametric primary resonance of the structure.

5 ROM of Uniform MEMS Resonators

A set of nonexplicit ordinary differential equations were devel-
oped to model the frequency response of the micro-beam using
the ROM. This method, based on the Galerkin procedure, uses the
undamped linear mode shapes of the undamped cantilever beam
as the basis functions [21, 24]. The solution is assumed as

uðz; sÞ ¼
XN
i¼1

uiðsÞuiðzÞ (11)

where N is the number of terms, uiðsÞ are the time dependent coef-
ficients, and /iðzÞ are the first N linear undamped mode shapes of
the uniform cantilever beam given by [21]
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where k is any nonzero positive integer, and xk are the corre-
sponding natural frequencies. These mode shapes form an ortho-
normal set. The first five natural frequencies xk and coefficients
Ck from Eq. (12) are given in Table 1. In order to implement the
ROM method the following steps were considered. Equation (10)

was multiplied by 1� u s; zð Þ½ �2 (to eliminate any deflection uðz; sÞ
from appearing in the denominator [21]), and then Eq. (11) was
substituted into it. Since the following relationships are satisfied
by the mode shapes of the cantilever
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the resulting equation is as follows:
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Then Eq. (14) was multiplied by mode shape /nðzÞ and the entire
equation was integrated from z¼ 0 to 1, where n ¼ 1; 2; :::;N.
Therefore, depending on the number of terms used, this process
led to a system of N second order coupled differential equations.

6 Numerical Computation

The resulting system of N second equations has been then trans-
formed into a system of 2N first order differential equations

_y 2k � 1ð Þ ¼ y 2kð Þ
_y 2kð Þ ¼ €uk

(
; k ¼ 1; 2;…;N (15)

by using the following variables:

y 2k � 1ð Þ ¼ uk

y 2kð Þ ¼ _uk

(
; k ¼ 1; 2;…;N (16)

The system of differential equations given by Eq. (15) has been
then integrated for a microbeam Table 2 with dimensionless
parameters given in Table 3. Four cases N¼ 2, N¼ 3, N¼ 4, and
N¼ 5 using AUTO 07P, a software package for continuation and
bifurcation problems [25] have been considered. Steady-state
solutions, both stable and unstable, have been found. In AUTO

Table 2 Dimensional system parameters

Parameter Symbol Value

Beam width W 20lm
Beam length l 300lm
Beam thickness h 2.0 lm
Initial gap distance g 8.0 lm
Material density q 2330 kg/m3

Young’s Modulus E 169GPa
Quality factor Q 350
Peak ac voltage V0 12.5V

Table 1 First five natural frequencies and mode shape coeffi-
cients for uniform cantilever

k¼ 1 k¼ 2 k¼ 3 k¼ 4 k¼ 5

xk 3.51562 22.0336 61.70102 120.91202 199.85929
Ck �0.734 �1.0185 �0.9992 �1.00003 �1.00000

Table 3 Dimensionless system parameters

Damping coefficient b* 0.01
Amplitude of excitation d 0.10
Fringe correction F 0.26
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the computation of periodic solutions to a periodically forced sys-
tem can be done by adding a nonlinear oscillator with the desired
periodic forcing as one of the solution components [25]. The
frequency-amplitude response of the system for AC near half nat-
ural frequency has been investigated using a ROM from the two
to five term ROM. The pull-in instability has been predicted.

7 Discussion and Conclusions

This paper investigated the nonlinear dynamics of the MEMS
cantilever resonator under soft ac voltage near the resonator’s half
natural frequency. The resonator is modeled as a Euler-Bernoulli
beam. Therefore, no nonlinearities arise from the structure itself.
The electrostatic force, including first-order fringe correction,
actuating the resonator, induces parametric nonlinear resonances.
Parametric coefficients are found in both linear and nonlinear
terms within the governing equation. The ROM method based on
the Galerkin procedure has been employed. Two term, three term,
four term, and five term ROM have been considered in order to
show the convergence of the method. AUTO 07P software has
been used to numerically solve the resulting system ODEs and
generate the amplitude-frequency response. The predictions of the
ROM (present work) and MMS [21] have been discussed. ROM
was able to accurately capture the behavior of the system where
the perturbation method could not [18], i.e., from moderately
large deflections up to the pull-in instability limit. Using four or
more modes guarantees predicting the pull-in phenomenon [13,
18, 21]. Caruntu and Knecht [21] showed numerical simulations
of the pull-in phenomenon. The results of this work are shown in
Fig. 2 amplitude-frequency response of the resonator, Fig. 3 ROM
convergence, Fig. 4 influence of dimensionless damping, Fig. 5
influence of dimensionless voltage parameter, and Fig. 6 influence
of the dimensionless fringe parameter. Umax is the amplitude of
the free end of the cantilever.

Figure 2 shows the amplitude-frequency response for five terms
(5 T) ROM. This response consists of three branches. Branches 1
and 3 show stable steady-state solutions (solid lines), and branch 2

Fig. 2 Amplitude frequency response for AC near half natural
frequency using the MMS [21] and a five term ROM (annotated)
for dimensionless parameter values b� 5 0.01, d5 0.1, and
f50.26

Fig. 3 Amplitude frequency response for AC near half natural
frequency using a two, three, four, and five term ROM for dimen-
sionless parameter values b� 5 0.01, d5 0.1, and f50.26

Fig. 4 Amplitude-frequency response showing the influence
of the dimensionless damping parameter b� for dimensionless
parameter values d5 0.1 and f50.26 using the MMS [21] and a
five term ROM

Fig. 5 Amplitude-frequency response showing the influence
of the voltage parameter d for dimensionless parameter values
b� 5 0.01 and f5 0.26 using the MMS [21] and a five term ROM

Fig. 6 Amplitude-frequency response showing the influence
of the fringe correction f for dimensionless parameter values
b� 5 0.01 and d50.1 using the MMS [21] and a five term ROM
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unstable solutions (dashed lines) [21, 26]. As the frequency is
swept up, the amplitude of the resonator increases, along branch
1, until it reaches point B, where a sudden jump to pull-in (contact
of the resonator with the ground plate) occurs. As the frequency is
swept down, the amplitude of the resonator increases, along
branch 3, until it reaches point A, where a sudden jump to pull-in
occurs. Branches 1 and 2 together illustrate a saddle-node bifurca-
tion with B the bifurcation point. One can notice the excellent
agreement between the MMS and ROM for amplitudes less than
0.5 of the gap. Moreover, on branch 3 the two methods are in
agreement up to amplitudes of 0.85 of the gap. One could say that
the two methods are in good agreement for amplitudes below
points A and B. Yet, MMS fails to accurately predict or predict at
all pull-in instability; the amplitude and frequency of point B are
overestimated, point A is not predicted. Also MMS fails to predict
that pull-in can occur from high initial amplitudes outside the
escape band, i.e., MMS fails to predict the unstable branch 2. One
can notice that if the initial amplitude is above branch 2, then
pull-in occurs. The ROM predicts the amplitude of bifurcation
point B to be about 0.5 of the gap, and the amplitude of pull-in
instability point A to be about 0.87 of the gap, which is more
accurate than Caruntu and Knecht [21] who predicted values of
about 0.3 and 0.5, respectively.

Figure 3 illustrates the convergence of the ROM method for the
frequency-amplitude response with respect to the number of terms
N¼ 2, 3, 4, 5 used in the ROM. As can be noted, changes become
less significant with the addition of terms. Numerical simulations
conducted in this research demonstrate that four or more terms are
required for the ROM to predict pull-in. The convergence shows a
very interesting behavior of the system in the higher amplitudes
branch 2. As the number of terms in the ROM increases from two
to five, the unstable branch of the saddle-node bifurcation con-
verges to branch 2 of Fig. 2. The ROM convergence of the unsta-
ble branch has not been predicted by Caruntu and Knecht [21]
who limited their study to stable solutions.

Figure 4 shows the effect of the dimensionless damping param-
eter b* on the frequency-amplitude response of the resonator
using a five term ROM and MMS [21]. For lower damping values,
such as b*¼ 0.008 there is an escape band of frequencies, so the
cantilever gets pulled-in from any initial amplitude. As the damp-
ing increases the escape band is narrowed until no pull-in phe-
nomenon can occur as the frequency is swept up, only large
amplitudes of about 0.85 of the gap being reached; see the case of
b*¼ 0.035. If the damping continues to increase, then the peak
amplitude decreases and the resonator experiences a linear dy-
namics like behavior; see the case of b*¼ 0.06. As the damping
increases the difference in frequency between points A and C
becomes smaller and smaller until they coalesce resulting into a
linear like behavior of the resonator. From a physical perspective,
more air damping translates into a greater amount of energy loss
within the MEMS system, meaning the system experiences lower
amplitudes for a given voltage. It can be noticed that MMS [21]
although predicts the bifurcation point B for b*¼ 0.008, and it
fails to predict B for b*¼ 0.035. Therefore MMS overestimates
the damping related (as the damping increases) transition of the
resonator from nonlinear to linear-like behavior.

Figure 5 illustrates the influence of the voltage parameter d on
the amplitude frequency-amplitude response of the MEMS reso-
nator using the five term ROM and MMS [21]. As d increases the
nonlinearities in the system are enhanced: (1) the escape band
enlarges, the bifurcation point B being shifted to lower frequen-
cies and the pull-in instability point A to slightly higher frequen-
cies; one can notice that ROM for d¼ 0.032 predicts that pull-in
cannot occur while the frequency is swept up, only high
amplitudes of 0.85 of the gap being possible, (2) the amplitude of
the bifurcation point B slightly reduces, (3) the amplitude
increases for frequencies outside the escape band, and (4) the area
above branch 2 enlarges. MMS, although in good agreement with
the ROM at small amplitudes, fails to accurately predict the
behavior of the resonator for large amplitudes (1) overestimating

the amplitude and frequency of the bifurcation point B; the bifur-
cation frequency is extremely important if resonators are used as
sensors, (2) not predicting the pull-in instability at point A, and
(3) not predicting initial high amplitudes (above branch 2) for
which pull-in occurs.

Figure 6 shows the influence of the fringe effect correction f on
the frequency response of the system using the five term ROM
and MMS. Fringing fields emanating from the lateral and top
surfaces of the deformable beam need to be accounted for when
modeling the electrostatic field. ROM predicts that as the fringe
parameter f increases (beam width relative to the gap decreases)
branches 1 and 2 are shifted to lower frequencies, and branch 3 to
higher frequencies, and therefore 1) the escape band enlarges, the
frequency of the bifurcation point B is shifted to lower frequen-
cies, and the frequency of point A to slightly higher frequencies.
Also, (2) the amplitude of point B slightly increases, while (3) the
amplitude of point A is not affected. For the same frequency, the
larger the fringe effect, the larger the amplitude if not pull-in.

One of the possible limitations of this paper is the use of only
Palmer’s formula for the fringe effect. Other formulas [21], such
as Meijs-Fokkema, and Batra-Porfiri-Spinello [27], which are
developed for narrow structures, would have allowed for numeri-
cal simulations of narrower structures than in the one presented in
this work. The geometry of the MEMS resonator in this paper
does not necessarily require either Meijs-Fokkema or Batra-Por-
firi-Spinello fringe formulas. The Batra-Porfiri-Spinello formula
was derived for narrow microbeams with a ratio width/height
between 0.5 and 2.0, while in this work this ratio is 10. Also, it
has been reported [27] that the Palmer formula gives erroneous
values of the capacitance per unit line for narrow microbeams
when the ratio width/thickness is between 0.5 and 5, and the ratio
gap/thickness is between 0.2 and 2. The corresponding ratios in
this work are 10 and 4. Another limitation is that the paper does
not include experimental work. This will be the objective of future
investigations.
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