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This paper deals with the nonlinear response of electrostatically actuated cantilever beam

microresonators near-half natural frequency. A ¯rst-order fringe correction of the electrostatic

force, viscous damping, and Casimir e®ect are included in the model. Both forces, electrostatic

and Casimir, are nonlinear. The dynamics of the resonator is investigated using the method of
multiple scales (MMS) in a direct approach of the problem. The reduced order model (ROM)

method, based on Galerkin procedure, is used as well. Steady-state motions are found.

Numerical simulations are conducted for uniform microresonators. The in°uences of damping,

actuation, and fringe e®ect on the resonator response are reported.
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Nomenclature

Constants

"0 ¼ 8:854� 10�12 C2N�1m�2 Permittivity of free space

} ¼ 1:055� 10�34 J � s Dirac constant

c ¼ 2:998� 108 m � s�1 Speed of light

� ¼ 1:85� 10�5 kg �m�1s�1 Dynamic coe±cient of air at 25�C
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Parameters

A Resonator cross-sectional area

A� Dimensionless cross-sectional area

b Damping coe±cient

E Young's modulus

f Fringe correction parameter

g Initial resonator gap

h Resonator thickness

I Moment of inertia

I� Dimensionless moment of inertia

‘ Beam length

M Molar mass of gas

P Air pressure

Q Quality factor

T Temperature

V Voltage

W Resonator width

� Casimir parameter

� Excitation parameter

!k Natural frequency

� Excitation frequency

Variables

a Resonator amplitude

t Dimensional time

uðzÞ Dimensionless beam displacement

wðxÞ Dimensional beam displacement

x Dimensional position along beam

z Dimensionless position along beam

� Dimensionless time

1. Introduction

Microelectromechanical (MEMS) resonator systems such as microbeams and

microplates are used in a variety of applications. Yet, they are mostly used as linear

resonators. Nonlinearities play a signi¯cant role at micron scale. Therefore, a better

understanding of the dynamics of nonlinear systems is essential. Nonlinearities arise

from a number of sources such as large de°ections (geometric nonlinearities),

squeeze-¯lm damping, electrostatic actuation, and intermolecular surface forces such

as Casimir or van der Waals1 present at micron and submicron scales. A model

including Casimir e®ect and a ¯rst-order fringe e®ect has been reported in the

literature.2 Electrostatic excitation is produced by a °uctuating voltage between
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a microcantilever resonator and a ground plate, and leads to parametric coe±cients

in both linear and nonlinear terms of the equation of motion. A similar investigation

has been conducted for a parametrically excited comb drive system.3

Electrostatic actuation creates a variety of nonlinear parametric resonances

depending on system parameters, excitation frequency, and excitation voltage.

Various bifurcations, in which the frequency of excitation has been used as the

bifurcation parameter, have been reported in the literature. Understanding the

nature of parametric excitations is of general interest. Parametric excitations can be

used to design devices such as mass sensors,4,5 microscopy probes,6,7 ¯lters,8,9 and

resonators.9�13 In addition, the stability of these systems and the types of non-

linearities that occur are highly sensitive to physical parameters, initial amplitude,

and excitation frequency.3,9�13 It is then important to identify bifurcation par-

ameters and bifurcation points in order to design and control systems under para-

metric excitation. Bifurcation analyses have been reported in literature for

parametrically excited systems, mainly for discrete comb drive systems.3,14 Para-

metric excitations in a cantilevered beam coupled to an electrical system via a pie-

zoelectric patch have been used for energy harvesting.15 It has been found that there

was an optimal value for the electromechanical coupling terms in order to maximize

the output voltage of the harvester. Regarding harvester's sensitivity, a critical value

for excitation forces below which oscillations did not occur has been reported. This

value has been showed to be dependent on the electromechanical coupling term. A

double-sided electromechanically driven nanotube resonator taking into account the

van der Waals force has been investigated as well.16 An energy-based method has

been used to create analytical relationships for the steady-state amplitude of the

nanotube as a function of driving frequency and excitation voltage. In addition, an

analytical relationship for the resonant pull-in voltage has been developed.

This paper investigates the in°uence of nonlinearities resulting from parametric

electrostatic excitation and Casimir e®ect on the response of cantilever microbeams

near-half natural frequency. The model of the microcantilever resonator is developed

using the Euler�Bernoulli hypothesis of thin beams. The partial di®erential equation

of motion is obtained using Hamilton's principle. Then, the method of multiple scales

(MMS) is directly applied to the partial di®erential equation of motion to obtain the

frequency�amplitude relationship of the microcantilever resonator. To the best of

our knowledge an analysis including fringe and Casimir e®ects has not been conducted

for soft excitations of continuous microsystems such as microcantilever resonators.

Most of the analysis in literature investigates pull-in stability and amplitude�
frequency relations or ¯nds limit cycles and time responses of such systems.2,17�19

2. System Model

This section describes the development of the model being used in the investigation

of microcantilever resonators. The equation of motion of the resonator is based on

Euler�Bernoulli theory for thin beams. Subsequent sections discuss the e®ects being
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considered in the model which include: (1) the electrostatic force used to actuate the

resonator, (2) damping forces, and (3) nanoscale surface forces (Casimir e®ect).

2.1. Partial-di®erential equation of motion

Consider a °exible cantilever beam suspended over a grounded substrate. The beam

is electrostatically actuated by applying a potential di®erence between the cantilever

and the underlying plate. In addition to the electrostatic force, viscous damping and

Casimir e®ect are considered. The length of the beam is relatively large compared to

the underlying gap. Thus the slope of the resonator is relatively small. Therefore,

Euler�Bernoulli hypothesis holds. Using generalized Hamilton's principle, the

boundary value problem of electrostatically actuated microcantilever resonators

(Fig. 1), is as follows

�AðxÞ @
2w

@t2
þ @ 2

@x2
EIðxÞ @

2w

@x2

� �
�RðxÞ ¼ 0

wð0Þ ¼ @w

@x
ð0Þ ¼ @ 2w

@x2
ð‘Þ ¼ @ 3w

@x3
ð‘Þ ¼ 0 ;

8>>><
>>>:

ð1Þ

where w ¼ wðx; tÞ is the transverse displacement of the beam, x longitudinal coor-

dinate, ‘ beam's length, E Young's modulus, AðxÞ cross-sectional area, IðxÞ cross-
sectional moment of inertia, and � material density. The electrostatic force Fe,

Casimir force Fc, and damping force Fd were considered in the development of the

nonconservative forces as follows:

RðxÞ ¼ Fe þ Fc � Fd: ð2Þ

�

W 

h

g 

Fig. 1. Uniform cantilever resonator.
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2.2. Electrostatic Force and Fringe E®ect

The actuation force is produced by applying a potential di®erence across the upper

beam and underlying conducting plate. This force is commonly modeled using the

parallel plate equation for capacitors calculated by assuming in¯nitely large plates

with no edge

F 0
e ¼

"0W

2

V 2

ðg� wÞ2 ; ð3Þ

where "0 ¼ 8:854� 10�12 C2N�1m�2 is the permittivity of free space, W is the beam

width, g is the initial gap between the beam and ground electrode, and V ðtÞ is the
applied voltage. This is a reasonable treatment of the electrostatic force under many

circumstances where the width of the beam is large with respect to the gap and with

small de°ections relative to the gap. When the beam's gap-to-width (g=W ) ratio is

less than 0.6 and thickness-to-width (h=W ) ratio is less than 0.2, the parallel plate

approximation is typically used.20 This approximation may not be su±cient, how-

ever. When numerically calculated values of the parallel plate capacitance are

compared with values using the in¯nite plate approximation (3), it is found that the

beam must be wide and thin with a gap-to-width ratio of g=W < 0:01 and a thick-

ness-to-width ratio of h=W < 0:1 to have a deviation of 6% or less.21 If a narrower or

thicker beam is to be considered, the parallel plate treatment of the force becomes

insu±cient. The inaccuracies arise from fringing e®ects that occur due to the ¯nite

width and thickness of the beam. The fringe e®ect accounts for the ¯eld lines that

curve from the edge of one plate to another and are outside the volume between

plates. Therefore, the electrostatic force is larger than predicted by the parallel plate

approximation. To include the e®ects of electrostatic fringe e®ect, a corrective factor

Fðg;h;wÞ to the idealized parallel plate formulation is considered as follows:

Fe ¼ F 0
e � Fðg;h;wÞ: ð4Þ

The fringe correction factor F depends only on the geometry of the beam. In the case

of an idealized parallel-plate approximation given by Eq. (3), F ¼ 1. Several

expressions are available in literature dedicated to fringe correction factors F . These

expressions are appropriate under certain circumstances. One of the earliest for-

mulations of the fringe correction factor F is Palmer's formula22

F ¼ 1þ 2

�

g

W
1þ ln �

g

W

� �� �
: ð5Þ

This correction factor accounts for a large but ¯nite plate width. It does not include

¯nite thickness corrections. Therefore, this correction factor would be most appro-

priately used when working with thin and wide beams but an improvement over the

in¯nite plate approximation. When the capacitance using the Palmer formulation

(5) is compared to numerically calculated values, a deviation of 4% or less is obtained

with g=W < 0:04 and h=W < 0:1.21 Meijs�Fokkema developed the fringe correction
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factor formula23 as follows

F ¼ 1þ 0:77
g

W
þ 1:06

g

W

� �
0:75 þ 1:06

gh

W 2

� �
0:5

: ð6Þ

This formulation accounts for both a ¯nite plate width and thickness. In addition, it

is valid for narrower beams. When the capacitance using the Meijs�Fokkema for-

mulation (6) is compared with the numerically calculated values, a deviation of 5% or

less is obtained with g=W < 4.21 Batra et al.21 numerically developed a fringe cor-

rection factor formula taking into account both ¯nite width and thickness

F ¼ 1þ 0:36
g

W
þ 0:85

g

W

� �
0:76 þ 2:5

gh

W 1:316

� �
0:76

: ð7Þ

Their equation was developed by ¯rst assuming that the fringe correction factor

function could be described in the same form as the Meijs�Fokkema correction (6).

They then numerically computed the capacitance per unit length of a thick and

narrow beam for di®erent values of width and thickness. The resulting data was then

least square ¯tted to the assumed function giving the correction in Eq. (7). This

approximation performs even better with deviations from numerically calculated

values of less than 2% for g=W < 10.

Previous formulations ((5)�(7)) determined the electrostatic force per unit length

on a beam correcting for fringe e®ects due to either ¯nite width or thickness. There is

an underlying assumption that the gap-to-length ratio of the beams are relatively

small (on the order of 10�2�10�3) for each formulation in Eqs. (5)�(7) and,

therefore, the de°ections of the beam should be small. An approximation is made

assuming the beam to be locally parallel.24 If the gap-to-length ratio is larger, the

curvature of the beam may need to be taken into account. Therefore, a parallel

plate approximation is not appropriate. Krylov et al.24 formulated a correction to the

electrostatic force assuming larger gaps taking into account the curvature of a beam

F ¼ 1�
g
‘

� �
2

3g2
@w

@x

� �
2

þ 2ðg� wÞ @
2w

@x2

� �
: ð8Þ

The function was developed using a straightforward perturbation method by trun-

cating the terms higher than second order. Results for terms up to fourth order were

also presented in Ref. 24 which contained more complicated higher-order partial

derivatives. This formulation (8), however, is limited to wide thin beams. As long as

the beam is su±ciently wide, the electric ¯eld pressure calculated by Eq. (8) has a

deviation of less than 1% for gap-to-length ratios of g=‘ < 0:5.

For the model being developed in this paper, the Palmer approximate formula is

used considering only the ¯rst-order fringing correction. This gives an electrostatic

force per unit length along the beam as

Fe ¼
"0W

2

V ðtÞ2
ðg� wÞ2 1þ 0:65

ðg� wÞ
W

� �
: ð9Þ
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Equation (9) allows an investigation of how the fringe corrections can a®ect the

characterization of nonlinearities within a system.

A typical strategy for actuating a microresonator is by applying a voltage that

consists of both a polarizing DC voltage on top of a °uctuating AC voltage such that

V ðtÞ ¼ Vp þ V0 cosð�tÞ; ð10Þ
where Vp is the DC component, V0 is the AC amplitude, and � is the frequency of the

AC voltage. The voltage is squared to determining the electrostatic actuation force

(9). The square of the voltage can be written as

V ðtÞ2 ¼ V 2
p þ V 2

0

2
þ 2VpV0 cosð�tÞ þ

V 2
0

2
cosð2�tÞ: ð11Þ

The voltage (11) and, therefore, the actuating force can be characterized as having

three components. A static component due to the ¯rst two terms V 2
p þ V 2

0 =2, a ¯rst

harmonic component due to the third term 2VpV0 cosð�tÞ, and a second harmonic

component due to the last term 0:5 � V 2
0 cosð2�tÞ. By adjusting the DC and AC

components of the voltage, one can in°uence which of the harmonics dominates in

the actuation of the system. If there is no AC voltage applied, V0 ¼ 0, then a static

actuating force is applied.1,19,25,26 If the polarizing voltage is much larger than the

AC voltage, Vp � V0, as considered in many cases,19 then the second harmonic can be

neglected since it is su±ciently small. The resonator is then in°uenced by only the

¯rst harmonic of the voltage on top of a static de°ection.

This paper investigates the case in which there is no DC polarizing voltage,

Vp ¼ 0, with only the AC voltage present. In this case, it is ¯rst noticed from Eq. (11)

that even when the polarizing voltage is neglected, the AC voltage will still con-

tribute to the static voltage component. Second, the ¯rst harmonic of the applied

voltage is zero with only the second harmonic contributing such that

V ðtÞ2 ¼ V 2
0

2
þ V 2

0

2
cosð2�tÞ: ð12Þ

If Eq. (9) is then Taylor expanded with respect to the beam de°ection w, then it can

be further illustrated how the electrostatic force induces a combination of pure

harmonic and parametric excitations to the resonator

Fe ¼
"0
2
V 2ðtÞ W þ 0:65g

g2

� �
þ 2W þ 0:65g

g3

� �
wþ 3W þ 0:65g

g4

� �
w2

�

þ 4W þ 0:65g

g5

� �
w3

�
ð13Þ

A similar approach has been used to actuate a comb-¯nger resonator.4,5

2.3. Damping forces

A variety of sources can contribute to energy losses within a micromechanical sys-

tem. These losses may include air damping, internal friction, support loss, and
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thermoelastic damping. Depending on the environment in which the MEMS device is

operating, di®erent loss mechanisms become dominant. When the device is in an

ultra low pressure environment, losses due to air damping are not signi¯cant and

structural losses are dominant. At higher pressures, however, the opposite is true.

The air damping e®ects are dominant.

For an oscillating beam near a ¯xed surface, the air damping can consist of two

components. The ¯rst is due to viscous °ow as the beam moves through the air. The

force per unit length due to viscous damping is described by

Fd ¼ b
@w

@t
; ð14Þ

where b is the coe±cient of viscous damping per unit length.27

The second source of air damping is due to air being pushed out or sucked into the

region between the oscillating beam and ¯xed wall. This so-called squeeze ¯lm

damping can be approximated as a type of restoring force caused by the compression

of air between plates and is sometimes referred as elastic damping. The force per unit

length due to elastic damping is described by

Fe ¼ kew; ke ¼
8‘WPa

�2g
; ð15Þ

where ke is the coe±cient of elastic damping (given here for a narrow beam) and Pa is

the air pressure.27 The type of air damping that dominates within a system, viscous

or elastic, depends on the frequency of the oscillator and the surrounding air press-

ure. At low frequencies, the air does not get signi¯cantly compressed and viscous

damping is a larger in°uence than elastic. If the oscillation frequencies are large,

however, the air does not have time to escape the cavity between the plates and is

compressed causing elastic damping to be a larger in°uence.27

Pressure a®ects how damping in°uences a system as well. Depending on the air

pressure, the e®ects of viscous damping falls into four regimes: intrinsic, mol-

ecular, intermediate, and viscous.28,29 The intrinsic region (<1Pa)29 represents

extremely low pressures where air damping becomes negligible and structural

damping is the primary source of damping. The molecular region (1�66Pa)28

damping is caused by collisions with individual molecules and can be analytically

describes by applying the kinetic theory of gases. The intermediate region

(66�6600Pa)28 is described by Stokes' damping,29 and the viscous region

(>6600Pa) is described by applying Reynolds equation for a continuous °ow,

which is a special case of the Navier�Stokes equation in the limit of small Rey-

nolds numbers.

If the pressure at which the resonator operates remains in the viscous regime, the

Reynolds equation can be applied directly to the case of a long and narrow plate.

This gives an expression for the quality factor based on the geometry of the plate,27 in

which the quality factor is a dimensionless quantity that describes the rate of energy
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loss by a system

Q ¼ �4�A!g3

96�‘W 3
: ð16Þ

This would imply that viscous damping is independent of air pressure. This has

been experimentally shown to be relatively good approximation near atmospheric

pressures.27

For the other pressure regions, a pressure dependence on the quality factor is

observed. Within the intermediate region and low-pressure viscous region, the

quality factor is derived using the Navier�Stokes equation by approximating a beam

as a string of spheres with a radius equal to the width of the beam.30 The quality

factor is found to be proportional to 1=
ffiffiffiffi
P

p
in this case. In cases in which the reso-

nator is operating in a rare¯ed environment, a molecular model is used based on the

kinetic theory of gasses and the interaction of gas molecules and oscillating plate.28

The quality factor is found to be proportional to 1=P in this case.

In order to characterize the relative in°uences of viscous and elastic dampings,

the squeeze number � is considered. The number � is derived via the Reynolds

equation31

� ¼ 12�S 2!

Pag2
; ð17Þ

where � is the dynamic coe±cient of viscosity, S is the characteristic size of the

system (beam width in our case), Pa is the absolute air pressure, and g is the gap

width. For small squeeze numbers, viscous damping is dominant while at large

squeeze numbers, elastic damping is dominant. At a squeeze number of approxi-

mately � ¼ 10 (the cut-o® squeeze number), the viscous and elastic forces are

equal.27 For example, if we consider a microcantilever of 300�m length, 20�mwidth,

2�m thickness, 8�m gap, 350 quality factor Q, 2330 kg/m3 density, and 169GPa

Young modulus, at the lower end of the viscous regime (6600Pa) and consider

oscillations near primary resonance (30 kHz), the squeeze number is found to be small

� ¼ 0:04. This means the dominant source of air damping is viscous and the elastic

air damping is negligible.27 The model being constructed in this paper will be con-

sidered within this regime (16).

It is convenient to consider the e®ects of damping and the quality factor in terms

of a damping coe±cient for modeling purposes. For viscous air dampings, the

relationship between the quality factor and damping coe±cient is given by10

b ¼ �A!

Q
: ð18Þ

By substituting Eq. (16) into Eq. (18), the viscous damping coe±cient is found to be

b ¼ 96�‘W 3

�4g3
: ð19Þ
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2.4. Casimir force

When the separation of surfaces is larger than 20 nm and less than 1000 nm, Casimir

e®ects occur.2 In this work, such gap distances are considered. The Casimir force per

unit length along the beam is given by32

Fc ¼
�2}cW

240ðg� wÞ4 ; ð20Þ

where } ¼ 1:055� 10�34 J s is Planck's constant divided by 2� and c ¼ 2:998�
108 ms�1 is the speed of light.

3. Dimensionless Equation

Dimensionless variables are now introduced

u ¼ w

g
; z ¼ x

‘
; � ¼ t

1

‘2

ffiffiffiffiffiffiffiffiffi
EI0
�A0

s
; ð21Þ

where u; z; and � are the dimensionless beam displacement, dimensionless longi-

tudinal coordinate, and dimensionless time, respectively. The dimensionless cross-

sectional area A� and inertia I � are A� ¼ A=A0 and I � ¼ I=I0, respectively, where

A0 and I0 are reference cross-sectional area and moment of inertia. Substituting

Eq. (21) into Eq. (1), one obtains the dimensionless boundary value problem

A� @
2u

@� 2
þ @ 2

@z2
I � @ 2u

@z2

� �
¼ �b�

@u

@�
þ �

ð1� uÞ4 þ
�

ð1� uÞ2 V
2ð�Þ

þ f
�

ð1� uÞ V
2ð�Þ

uð0Þ ¼ @u

@z
ð0Þ ¼ @ 2u

@z2
ð1Þ ¼ @ 3u

@z3
ð1Þ ¼ 0;

8>>>>>>><
>>>>>>>:

ð22Þ

where

� ¼ �2}cW‘4

240g5EI0
; � ¼ "0W‘4

2g3EI0
V 2
0 ; f ¼ 0:65g

W
; b� ¼ b

‘2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A0EI0

p : ð23Þ

The dimensionless parameters �; �; f, and b� of Eq. (23) track the in°uence of

Casimir e®ect, electrostatic excitation amplitude, fringe e®ect, and damping,

respectively. In addition, V ð�Þ is the dimensionless voltage and V0 the reference

voltage. It will also be convenient to introduce a dimensionless frequency !�, which
follows from the dimensionless time in Eq. (21) as

!� ¼ !‘2

ffiffiffiffiffiffiffiffiffi
�A0

EI0

s
: ð24Þ
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Substituting the dimensionless damping coe±cient, Eqs. (23) and (24), into Eq. (18),

the quality factor can be related to dimensionless damping parameter as follows

b� ¼ !�

Q
: ð25Þ

4. Direct Approach using the Method of Multiple Scales (MMS)

Consider parameters �; �; f, and b� to be small. This corresponds to weak in°uences

of the Casimir e®ect, excitation force, fringe correction, and damping. Expanding

around u ¼ 0 the right-hand side of Eq. (22), retaining the terms up to the third

power of u, and setting all these terms to a slow scale by multiplying them by " a

small dimensionless bookkeeping parameter, one obtains

A� @ 2u

@� 2
þ @ 2

@z2
I � @ 2u

@z2

� �

¼ �"b�
@u

@�
þ "�½1þ 4uþ 10u2 þ 20u3�

þ "�½ð1þ fÞ þ ð2þ fÞuþ ð3þ fÞu2 þ ð4þ fÞu3�V 2ð�Þ: ð26Þ
The MMS is then applied. A ¯rst-order expansion of the dimensionless displacement

u is then considered

uðz; �; "Þ ¼ u0ðz;T0;T1Þ þ " � u1ðz;T0;T1Þ; ð27Þ
where T0 ¼ � is a fast time scale and T1 ¼ " � � is a slow time scale. The time

derivatives then become @=@� ¼ D0 þ " �D1 where Dn ¼ @=@Tn. Replacing Eq. (27)

and the time derivatives into Eq. (26) and equating coe±cients of like powers of ",

the following two approximation problems result:

Order "0 :

A�D 2
0u0 þ

@ 2

@z2
I � @ 2u0

@z2

� �
¼ 0

u0ð0Þ ¼
@u0

@z
ð0Þ ¼ @ 2u0

@z2
ð1Þ ¼ @ 3u0

@z3
ð1Þ ¼ 0

8>>><
>>>:

; ð28Þ

Order "1 :

A�D2
0u1 þ

@ 2

@z2
I � @ 2u1

@z2

� �

¼ �2D0D1u0 � b�D0u0 þ �½1þ 4u0 þ 10u2
0 þ 20u3

0�
þ �½ð1þ fÞ þ ð2þ fÞu0 þ ð3þ fÞu2

0 þ ð4þ fÞu3
0�V 2ðT0Þ

u1ð0Þ ¼
@u1

@z
ð0Þ ¼ @ 2u1

@z2
ð1Þ ¼ @ 3u1

@z3
ð1Þ ¼ 0:

8>>>>>>>><
>>>>>>>>:

:

ð29Þ
The solution u0 of the zero-order boundary value problem given by Eq. (28) is

assumed to be

u0ðz;T0;T1Þ ¼ ’ðzÞ½AðT1Þei!T0 þ A ðT1Þe�i!T0 �; ð30Þ
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where A and A are complex conjugate coe±cients depending on the slow time scale

T1. Solving the boundary value problem, the mode shapes ’kðzÞ and their corre-

sponding natural frequencies !k are obtained. The natural modes for uniform can-

tilevers and cantilevers of varying thickness are reported in the literature.33,34 The

dimensionless voltage is considered as

V ð�Þ ¼ cos��T0; ð31Þ
where �� is the dimensionless frequency of excitation given by

�� ¼ �l2

ffiffiffiffiffiffiffiffiffi
�A0

EI0

s
: ð32Þ

In the following section, the ¯rst-order problem is solved to provide the phase-

amplitude evolution.

5. Resonance Near-Half Natural Frequency �!k/2

In this section, the resonance when excitation frequency is near half the natural

frequency, �� � !k=2, is investigated. The nearness of the excitation frequency can

be written as

2�� ¼ !k þ "�; ð33Þ
where � is a detuning parameter. Using Eqs. (31) and (33), the square of the

voltageV is given by

V 2ðT0Þ ¼
1

2
þ ðei!kT0þi�T1 þ e�i!kT0�i�T Þ

4
: ð34Þ

5.1. Phase�amplitude relationship

After substituting Eqs. (33) and (34) into Eq. (29), the secular terms are collected

and set equal to zero. One can notice that excitation frequencies near-half natural

frequency, �� � !k=2, give additional secular terms. Once the solvability condition,

stating that the right-hand side has to be orthogonal to every solution of the hom-

ogenous problem (28), is applied, one obtains

�2i!kg1kkA
0
k � i!kb

�g1kkAk þ ð4�þ C2Þg1kkAk þ 3ð20�þ C4Þg3kkA2
k
�Ak

þ 1

2
C1g0kke

i�T1 þ C3g2kkAk
�Ake

i�T1 þ 1

2
C3g2kkA

2
ke

�i�T1 ¼ 0; ð35Þ

where

C1 ¼
1

2
ð1þ fÞ�; C3 ¼

1

2
ð3þ fÞ�; ð36Þ

and A 0
k is the derivative of Ak with respect to the slow time scale T1. The coe±cients

gnkk are given by

gnkk ¼ hA�’n
k ; ’ki ¼

Z 1

0

A�’n
k’kdz: ð37Þ

where A� is the dimensionless cross-section area.
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Expressing Ak in polar form

Ak ¼
1

2
ake

i�k ; ð38Þ

and separating the real and imaginary parts, the following amplitude and phase

equations result as follows:

a 0
k ¼ � b�

2
ak þ C1

g0kk
g1kk

þ C3

4

g2kk
g1kk

a 2
k

� �
sinð�T1 � �kÞ

2!k

ð39Þ

ak�
0
k ¼ � ð4�þ C2Þ

2!k

ak �
3ð20�þ C4Þ

8!k

g3kk
g1kk

a3
k

� C1

g0kk
g1kk

þ 3C3

4

g2kk
g1kk

a2
k

� �
cosð�T1 � �kÞ

2!k

: ð40Þ

Using the following change of variables

	k ¼ �T1 � �k; ð41Þ
Eqs. (46) and (47) become

a 0
k ¼ � b�

2
ak þ C1

g0kk
g1kk

þ C3

4

g2kk
g1kk

a 2
k

� �
sin 	k
2!k

ð42Þ

ak	
0
k ¼ ak�þ ð4�þ C2Þ

2!k

ak þ
3ð20�þ C4Þ

8!k

g3kk
g1kk

a3
k

þ C1

g0kk
g1kk

þ 3C3

4

g2kk
g1kk

a 2
k

� �
cos 	k
2!k

: ð43Þ

Numerical integration of Eqs. (42) and (43) showing steady state for a uniform

microresonator is presented in Sec. 6.1.

5.2. Steady-state solutions

Steady-state solutions are considered by setting a 0
k ¼ 	 0

k ¼ 0. This gives the fol-

lowing set of parametric equations describing the amplitude�frequency relationship

C3

4

g2kk
g1kk

sin 	k
2!k

a 2
k �

b�

2
ak þ C1

gokk
g1kk

sin 	k
2!k

¼ 0; ð44Þ

� ¼ � 4�þ C2

2!k

� 3ð20�þ C4Þ
8!k

g3kk
g1kk

a 2
k � C1

g0kk
g1kk

þ 3C3

4

g2kk
g1kk

a2
k

� �
1

ak

cos 	k
2!k

: ð45Þ

Two amplitude solutions result from Eq. (44) as follows

ak ¼
2

C3

g1kk
g2kk

!k

sin 	k
b� 	 2

C3

g1kk
g2kk

!k

sin 	k
b�

� �2

� 4C1

C3

g0kk
g2kk

" #
1=2

: ð46Þ

Steady-state solutions for a uniform microresonator are presented in Sec. 6.1.
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5.3. Stability of steady-state solution

The stability of steady-state points, given by amplitude and phase ða0; 	0Þ, is tested
by using the Jacobian of Eqs. (45) and (46)

J ¼
@a 0

@a

@a 0

@	

@	 0

@a

@	 0

@	

2
664

3
775
ða0;	0Þ

¼

� b�

2
þ C3

4

g2kk
g1kk

ak
sin	k
!k

C1

g0kk
g1kk

þ C3

4

g2kk
g1kk

a2
k

� �
cos	k
2!k

3ð20�þC4Þ
4!k

g3kk
g1kk

ak

þ �C1

g0kk
g1kk

1

a2
k

þ 3C3

4

g2kk
g1kk

� �
cos	k
2!k

� C1
g0kk
g1kk

1

ak
þ 3C3

4

g2kk
g1kk

ak

� �
sin	k
2!k

2
6666666664

3
7777777775
ða0;	0Þ
ð47Þ

Jacobian eigenvalues for these points are found in order to determine their stability.

Stability of steady-state solutions of a uniformmicrocantilever is presented in Sec. 6.1.

6. Uniform Microcantilever Resonators

The case of uniform cantilever beams is considered. The solution of the zero-order

partial di®erential equation (28), along with boundary conditions, gives the mode

shapes for a uniform cantilever33 as follows

’kðzÞ ¼ �fcosð ffiffiffiffiffi
!k

p
zÞ � coshð ffiffiffiffiffi

!k
p

zÞ þ Ck½sinð
ffiffiffiffiffi
!k

p
zÞ � sinhð ffiffiffiffiffi

!k
p

zÞ�g; ð48Þ

where !k and Ck are dimensionless natural frequencies (!� in Eq. 24) and constant

coe±cients, respectively, given for the ¯rst ¯ve modes in Table 1. Substituting

Eq. (48) into Eq. (37), the coe±cients g1kk and g3kk for the ¯rst mode (k ¼ 1) and

second mode (k ¼ 2) are obtained as follows

g011 ¼ 0:7830; g111 ¼ 1:0000; g211 ¼ 1:4778; g311 ¼ 2:3488

g022 ¼ 0:4336; g122 ¼ 1:0003; g222 ¼ 0:4529; g322 ¼ 1:7830:
ð49Þ

Table 2 gives values of the physical characteristics of a typical microbeam.17 They

led to the values given in Table 3 of the dimensionless parameters of Eq. (23). Using

Table 1. First ¯ve natural frequencies and mode shape coe±cients for uniform cantilever.

k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 5

!k 3.51562 22.0336 61.70102 120.91202 199.85929

Ck −0.734 −1.0185 −0.9992 −1.00003 −1.00000
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Table 3 and Eq. (49), the frequency�amplitude relationships of steady-states near-

half natural frequency are obtained for both ¯rst mode (k ¼ 1) and second mode

(k ¼ 2). It should be noted here that we are considering a resonator with physical

dimensions on the micro-scale (Table 2). As a result, the parameter � tracking the

in°uence of the Casimir force is extremely small compared to the other dimensionless

parameters (Table 3). Therefore, the Casimir e®ect does not have an in°uence on the

microcantilever resonator. The results presented in this section are for mode 1

(k ¼ 1). The in°uence of the Casimir e®ect on a nanoresonator will be a point of

future investigation.

6.1. Steady-state solutions (MMS)

Phase-amplitude di®erential Eqs. (42) and (43) are numerically integrated to

observe the long-term behavior of the microresonator. Integration was carried out

using the Matlab function ode45, which uses an explicit Runge�Kutta algorithm.

The phase-amplitude behavior is obtained through numerical integration with the

initial amplitude and phase equal to zero. Figure 2 illustrates the phase-amplitude

response in time of the resonator with zero initial conditions. This ¯gure illustrates

the convergence to a steady-state solution of a ¼ 0:21 amplitude, and 	 ¼ 3:0 phase.

In addition, Fig. 3 shows the time�amplitude response of the resonator. As one can

notice, the resonator reaches the steady-state amplitude of a ¼ 0:21.

The steady-state amplitude�frequency response (Eqs. (45) and (46)) of the

microresonator (Table 3) obtained using the MMS is illustrated in Figs. 4 and 5. The

solid and dashed lines in Figs. 4 and 5 illustrate stable and unstable steady-state

solutions, respectively. Figure 4 shows the steady-state frequency�amplitude

response demonstrating a softening characteristic. The response consists of two

Table 2. Physical characteristics of a microbeam.

Parameter Symbol Value

Beam width W 20�m

Beam length l 300�m
Beam thickness h 2.0�m

Initial gap distance g 8.0�m

Material density � 2330 kg/m3

Young's modulus E 169GPa

Quality factor Q 350

Peak AC voltage V0 12.5V

Table 3. Dimensionless system coe±cients.

Dimensionless parameter Symbol Value

Casimir e®ect � 2:9� 10�9

Amplitude of excitation � 0.10

Fringe correction f 0.26

Damping coe±cient b� 0.01
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branches. The right-hand side branch represents stable solutions. The left-hand side

branch consists of both stable (solid line) and unstable (dash line) solutions.

A frequency sweep of the resonator from higher to lower frequencies (Fig. 4) leads to

a smooth increase in the amplitude up to the gap length. In reality, before such large

de°ections can be reached, a pull-in phenomenon, which cannot be predicted by the
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Fig. 2. Phase plot of a uniform cantilevered resonator tip showing a spiral trajectory to a ¯xed point

representing the systems steady-state amplitude and phase for the ¯rst mode (k ¼ 1). The phase plot was

produced by integrating the MMS equations using the initial amplitude and phase of a0 ¼ 0 and 	0 ¼ 0,

respectively. Dimensionless parameters: � ¼ 0:02; � ¼ 0; � ¼ 0:1; f ¼ 0:26, and b� ¼ 0:01.
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Fig. 3. Time response for a uniform cantilevered resonator tip using MMS for the ¯rst mode (k ¼ 1). A
steady-state amplitude of a ¼ 0:21 is reached. The initial amplitude of the tip is a0 ¼ 0. Dimensionless

parameters: � ¼ 0:02; � ¼ 0; � ¼ 0:1; f ¼ 0:26, and b� ¼ 0:01.
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MMS,9 will occur. When the frequency is swept from lower frequencies to higher

frequencies, the amplitude smoothly increases until unstable solutions along the left-

hand side branch are reached (Fig. 4). At this point, a jump would occur to higher

amplitudes, which results in a pull-in phenomenon. A similar behavior is found in
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ROM 3 terms

ROM 4 terms
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B

Fig. 4. Frequency response of a uniform capacitive resonator for mode 1 (k ¼1). The solid and dotted
lines are solutions from the MMS representing stable and unstable points, respectively. The points are

solutions using the ROM. A and B are where pull-in is predicted using the ¯ve-term ROM. Dimensionless

parameters: � ¼ 0, � ¼ 0:1, f ¼ 0:26, and b� ¼ 0:01.
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Fig. 5. Phase response of a uniform capacitive resonator for mode 1 (k ¼1). The solid and dashed lines are

solutions from the MMS representing stable and unstable points, respectively. Dimensionless parameters:
� ¼ 0, � ¼ 0:1, f ¼ 0:26, and b� ¼ 0:01.
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Ref. 9 for an electrically actuated clamped-clamped microbeam when parametrically

excited at half its natural frequency. Figure 5 illustrates the phase-frequency

response of the resonator. The lower branch represents the phase di®erence for

amplitude solutions along the left-hand side branch of Fig. 4. The upper branch

(Fig. 5) represents the phase di®erence for solutions along the right-hand side branch

of Fig. 4. The response of the microbeam is nearly in phase with the excitation (phase

di®erence is almost zero) for the stable steady-state solutions on the left-hand side

branch of Fig. 4, and the lower part of the lower branch of Fig. 5. The phase

di®erence between the resonator and excitation is nearly � in Fig. 5 for steady-state

solutions along the right-hand side branch of Fig. 4, at higher frequencies � > 0:05.

6.2. Reduced-order model (ROM)

A ROM method, based on the application of a Galerkin procedure that uses the

undamped mode shapes of a cantilevered beam as the basis functions, was used for

comparison with MMS results. In Eq. (22), the Casimir force was negligible, � � 0

(Table 3). The ROM was constructed13 by using a Galerkin procedure in which the

solution is assumed as

uðz; �Þ ¼
XN
i¼1

uið�Þ
iðzÞ; ð50Þ

where the number of terms N was ¯nite, 
iðzÞ was a set of N linear undamped

mode shapes of the uniform cantilever resonator, and uið�Þ were time-dependant
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Fig. 6. Time response for the tip of a uniform cantilever resonator using ROM showing the in°uence of the
fringe correction on the steady-state amplitude for mode 1 (k ¼ 1). As the fringe correction parameter

increases, the steady-state amplitude increases. The initial tip displacement is u0 ¼ 0. Dimensionless

parameters: � ¼ 0:02, � ¼ 0, � ¼ 0:1, and b� ¼ 0:01.
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coe±cients. The mode shapes 
iðzÞ are given by Eq. (48). To implement this pro-

cedure, the equation of motion, Eq. (22) was multiplied by ð1� uÞ2 to eliminate any

displacement terms from appearing in the denominator.25 Equations (48) and (50)

were then substituted into the result. Next, multiplying by 
nðzÞ, and integrating

the entire equation from z ¼ 0 to 1, a system of N second-order equations in time

resulted since n ¼ 1; 2; . . . ;N. The system of equations was then integrated using

Matlab. Steady states were found using two-, three-, four- and ¯ve-term ROMs for

di®erent values of the detuning parameter �, and then plotted in Fig. 4. Figure 6

illustrates the motion of the cantilever tip as a function of time. It is noted that the

time response of the resonator using the ROM and the time response predicted by the

MMS in Fig. 3 show similar transient behavior before steady state is reached.

7. Discussion and Conclusions

The behavior of near-half natural frequency of an electrostatically actuated canti-

lever microresonator is investigated. The microresonator is modeled as an

Euler�Bernoulli thin beam. Therefore, no nonlinearities arise from the structure

itself. However, electrostatic and Casimir forces acting on the resonator induce

parametric nonlinear resonances. Parametric coe±cients are found in both linear and

nonlinear terms within the governing equation. The model also includes ¯rst-order

fringe correction of the electrostatic ¯eld.

An approach in which the MMS is directly applied to the partial di®erential

equation of motion is used to ¯nd the frequency�amplitude relationship of the

steady-state solutions of the system. Then, these solutions are compared with

numerical results from the ROM. The frequency response of the system is illustrated

in Figs. 4 and 5, in the case of a uniform microcantilever resonator (Table 3).

7.1. Comparison of MMS and ROM results

Although accurate for small amplitudes and weak nonlinearities, the MMS is limited.

It cannot accurately predict frequencies and voltages at which pull-in phenomenon

occurs. Nayfeh and Younis9,10 reported the use of a ROM using a Galerkin procedure

to predict periodic motions. Results were then compared to perturbation method.

The Galerkin procedure was able to accurately capture the behavior of the system

where the perturbation method could not,25 i.e. for moderately large de°ections up to

the pull-in instability limit. Using three or more modes guarantees the convergence of

the steady-state amplitude.10,25 In the present work, similar two-, three-, four-, and

¯ve-term ROMs were used for the cantilever resonator. The results of the ROM were

compared with the direct approach using MMS. Figure 4 shows a comparison

between ROM and MMS for frequency�amplitude response. At larger amplitudes,

the ROM solutions diverge from MMS. The MMS underestimates the steady-state

amplitude at frequencies along the right-hand side branch in Fig. 4 and over-

estimates the steady-state amplitude along the left-hand side branch. One can also
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say that MMS overestimates the nonlinearities. MMS shows a stronger softening

e®ect (branches are more bent to the left) than the ROM. When the amplitude is

below 0.2, both methods coincide relatively well. This is expected since MMS is valid

for only moderate to small de°ections.

Regarding the number of terms in the ROM, the two-term ROM predicts the

location of the right-hand side branch just as well as the ¯ve-term ROM (Fig. 4).

The important di®erence between the lower-term ROMs and the higher-term ROMs

is the ability to predict pull-in instability. For accurate predictions of pull-in,

a su±cient number of terms must be used in the ROM model. The two- and

three-term ROMs predicted dimensionless steady-state amplitudes and dimension-

less de°ections of the resonator's tip exceeding unity, but not a pull-in phenomenon.

Dimensionless amplitudes (21) cannot exceed unity since the dimensional ampli-

tudes cannot exceed the gap between the microcantilever and ground plate.

Numerical simulations conducted in this research demonstrate that four or more

terms are required for the ROM to predict pull-in. Figure 4 illustrates the numerical

convergence process (from two-term ROM to ¯ve-term ROM) of ¯nding the pull-in

amplitude. The points labeled A in Fig. 4 show where the four- and ¯ve-term ROMs

predict the pull-in. The 5-term ROM predicts more accurately the pull-in

phenomenon. As the excitation frequency is swept downward along the right-hand

side stable branch, the pull-in occurs at � ¼ 0:008, point labeled A in Fig. 4. As the

excitation frequency is swept upward along the left-hand side branch, point B in

Fig. 4, where the resonator becomes unstable resulting in a pull-in phenomenon is

reached.

Pull-in manifests itself as a sudden increase in resonator tip velocity toward the

underlying substrate as the tip reaches its maximum displacement (Figs. 7(a)

and 7(b)). This leads to contact between the resonator and ground plate. When

this occurs, the numerical solution changes so rapidly that the code used to model
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Fig. 7. (a) Time response of the resonator tip's displancement illustrating the occurance of pull-in phe-
nonena using the ¯ve-term ROM (b) Time response of the resonator tip's velocity illustrating the

occurrence of pull-in phenomena using the ¯ve-term ROM. Dimensionless parameters: � ¼ 0, b� ¼ 0:01,

f ¼ 0:26, � ¼ 0:1, and � ¼ �0:03.
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the system is unable to continue. Figures 7(a) and 7(b) illustrate the pull-in

phenomenon showing how the resonator looses stability. The dimensionless velocity

v in Fig. 7(b) suddenly increases while the dimensionless de°ection u in Fig. 7(a) of

the resonator tip approaches unity. There is an in°ection in the displacement plot,

the concavity changes from concave down to concave up as the cantilever tip begins

to move toward pull-in. It is important to note than both methods MMS and ROM

predict the same system behavior for smaller amplitudes. The ROM is more accurate

for larger de°ections. The increased accuracy comes at a cost, though. First, the

ROM is more costly in the form of computational time (CPU time). Each point of the

¯ve-term ROM in Fig. 4 represents almost an hour of CPU time on a 2.70-GHz Dual

Core PC processor with 4-GB RAM, where as the MMS plot in the same ¯gure was

plotted in minutes. The MMS is computationally more e±cient than methods using

direct numerical integration.35 Second, numerical methods such as the ROM have a

problem of not providing an insight into the underlying physics and interactions of

a system.36 An analytical approach, such as the MMS, allows for a better insight of

the dependence of the system on its various parameters, and has the ability to predict

interesting phenomena.

Figure 8 compares the in°uence of the excitation parameter � on the frequency

response predicted by both methods MMS and ROM. Even though the MMS is

limited to weak nonlinearities with only moderate displacements, if one is interested

in modeling general system behavior without need to identify exact instability

points, the MMS method seems to be suitable. Using analytical methods in con-

junction with numerical methods can be a powerful way to study system behavior,

particularly in structural dynamics. Although there is a signi¯cant di®erence in the

predictions of MMS and ROM for amplitudes greater than a ¼ 0:1, both methods are

in good agreement. Since a micro-scale resonator is being considered, the Casimir

force is negligible; therefore, the only nonlinear in°uence on the system is the elec-

trostatic excitation. The strength of the nonlinearities in the system is controlled by

the excitation parameter �. A decrease in its value weakens the nonlinearities in the
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Fig. 7. (Continued )
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system. Both the ROM and MMS predict this nonlinear weakening as illustrated in

Fig. 8. At smaller values of the excitation parameter �, the two methods are in very

good agreement. There is signi¯cant variation in the two methods around the res-

onant peak at values of the excitation parameter � ¼ 0:01 and 0.03. The ROM also

predicts the resonant peak to split into two distinct branches at small values of the

excitation parameter �.

7.2. In°uence of parameters

In°uences of parameters b�, �, and f on the microresonator's response, ¯rst mode

(k ¼ 1), are discussed next. Figures 9 and 10 illustrate the in°uence of damping b� on
the frequency response of the resonator. One can notice from Fig. 9 that the fre-

quency response on the steady-state amplitude is una®ected by changes in damping

for low damping values (Fig. 9). Frequency responses are nearly identical for

damping coe±cients b� ¼ 0:01 and b� ¼ 0:001. When the damping coe±cient grows

su±ciently large, the two branches merge and produce a standard resonance peak

with a slight softening characteristic. At frequencies away from the resonant peak,

the damping does not a®ect the steady-state amplitude. All three frequency response

curves in Fig. 9 coincide. For example, at � ¼ 0:03, all three plots in the amplitu-

de�frequency curve have the same amplitude of a � 0:2. The phase 	 of the reso-

nator with respect to the excitation frequency is only marginally e®ected by damping

as illustrated in Fig. 10. When the damping is lower, there are two distinct branches

in the phase plot. As the damping increases, these branches merge such that there is a

smooth transition of the phase from lower to higher frequencies.
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Fig. 8. Comparison of the frequency response for a uniform cantilevered resonator using the ROM and
MMS showing the in°uence of the dimensionless excitation parameter � for the ¯rst mode (k ¼ 1).

Dimensionless parameters: � ¼ 0, f ¼ 0:26, and b� ¼ 0:01.
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Figures 11 and 12 illustrate the in°uence of the dimensionless excitation par-

ameter � on the frequency response of the system. At lower excitation forces, the

nonlinear behavior of the system is not evident (Fig. 11). As � is increased, the

in°uence of the nonlinearities becomes more obvious showing a typical softening

characteristic. As � continues to increase, the frequency�amplitude curve splits into

two distinct branches where the left-hand side branch is unstable at frequencies, as
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Fig. 10. Phase response of a uniform cantilevered resonator using the MMS showing the in°uence of the

dimensionless damping parameter b� for the ¯rst mode (k ¼ 1). Dimensionless parameters: � ¼ 0, � ¼ 0:1,
and f ¼ 0:26.
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Fig. 9. Frequency response of a uniform cantilevered resonator using the MMS showing the in°uence of the
dimensionless damping parameter b� for the ¯rst mode (k ¼ 1). Dimensionless parameters: � ¼ 0, � ¼ 0:1,

and f ¼ 0:26.
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indicated by the dash line in Fig. 11, and the right-hand side branch is stable. The

formation of the branches is further illustrated in Fig. 13, where at small excitations,

the two solutions to the parametric equations (45) and (46) are showed as upper and

lower curves. The lower curve represents solutions when the sign is negative in

Eq. (46) and the upper curve represents solutions when the sign is positive. As the

excitation parameter is increased, it is seen that the lower curve gets pulled upward
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Fig. 11. Frequency response of a uniform cantilevered resonator using the MMS showing the in°uence of

the dimensionless excitation parameter � for the ¯rst mode (k ¼ 1). Dimensionless parameters: � ¼ 0,

f ¼ 0:26, and b� ¼ 0:01.
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Fig. 12. Phase response of a uniform cantilevered resonator using the MMS showing the in°uence of the
dimensionless excitation parameter � for the ¯rst mode (k ¼ 1). Dimensionless parameters: � ¼ 0,

f ¼ 0:26, and b� ¼ 0:01.
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while the lower curve gets pulled downward. The formation of the two branches at

larger excitation forces occurs when the curves representing the two solutions merge.

It should be noted that the amplitudes represented by the upper curve are at values

larger than unity and hence have no physical meaning since the dimensionless beam

de°ection cannot be larger than one (21). At most frequencies, it is seen that

increased excitation forces result in an increase in the steady-state amplitude as

expected. At frequencies just below the systems half-natural frequency (� � �0:01),

the system behavior is di®erent (Fig. 11). Within a narrow band of frequencies

between � ¼ �0:01 and � ¼ �0:025, the steady-state amplitude decreases with

increasing the excitation parameter. The frequency response of the resonators phase

	 is illustrated in Fig. 12 for di®erent excitation parameters. The phase has two

distinct branches at higher excitation parameters (Fig. 12). The upper and lower

branches in Fig. 12 are associated with the right- and left-hand side branches in

Fig. 11, respectively. The phase is una®ected by the change in excitation parameter �

for frequencies outside the interval � ¼ �0:01 and � ¼ �0:025. Outside this interval,

the phase 	 is about � and zero (Fig. 12) for steady states on the right- and left-hand

side branches of Fig. 11, respectively. As the excitation parameter � is decreased, the

nonlinear e®ect reduces and the two branches merge (Fig. 12).

Figures 14 and 15 show the e®ect of the fringe parameter f on the frequency

response of the resonator. It should be ¯rst noted that f is directly related to the how

narrow the microbeam is compared to the gap (23). Hence, narrower beams will

experience larger fringe e®ect. The frequency response of the amplitude (Fig. 14),

shows that increasing the fringe parameter has the e®ect of shifting the branches to

lower frequencies. The left-hand side branch is more a®ected. Figure 15 shows that
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Fig. 13. Frequency response of a uniform cantilevered resonator showing the two solutions from Eq. (49)

developed using the MMS for the ¯rst mode (k ¼ 1). As the dimensionless excitation parameter � increases,

upper and lower branches merge. Dimensionless parameters: � ¼ 0, f ¼ 0:26, and b� ¼ 0:01.
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the fringe correction f has no signi¯cant e®ect on the frequency response of the phase

	 for either branch in Fig. 4. Figure 6 illustrates the in°uence of the fringe factor f on

resonator's amplitude using ROM. This is in good agreement with MMS (Fig. 14).

Next, the in°uences of parameters b�, �, and f on the microresonator response, for

excitation frequencies near half of the second natural frequency (k ¼ 2) (Table 1),

are discussed. Figures 16 and 17 show that the in°uence of damping on the response

of the system is similar to what was seen in the ¯rst mode although there are two
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Fig. 15. Phase response of a uniform cantilevered resonator using the MMS showing the in°uence of the

fringe correction for the ¯rst mode (k ¼ 1). Dimensionless parameters: � ¼ 0, � ¼ 0:1, and b� ¼ 0:01.

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

σ

a

f = 0.0
f = 0.26
f = 0.5

Fig. 14. Frequency response of a uniform cantilevered resonator using the MMS showing the in°uence of

the fringe correction for the ¯rst mode (k ¼ 1). Dimensionless parameters: � ¼ 0, � ¼ 0:1, and b� ¼ 0:01.
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di®erences. The ¯rst di®erence is that in order for resonance to occur with signi¯cant

amplitude, the damping must be greatly reduced. One could notice in Fig. 16 how

the damping coe±cient used for half of the ¯rst natural frequency (b� ¼ 0:01)

produces almost no resonant response. A resonant response is not seen unless

the damping is signi¯cantly reduced. One can notice that for the second mode a

damping parameter of b� ¼ 0:001 was used (where b� ¼ 0:01 was used for ¯rst
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Fig. 16. Frequency response of a uniform cantilevered resonator using the MMS showing the in°uence of
the dimensionless damping parameter b� for the second mode (k ¼ 2). Dimensionless parameters: � ¼ 0,

� ¼ 0:1, and f ¼ 0:26.
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Fig. 17. Phase response of a uniform cantilevered resonator using the MMS showing the in°uence of the

dimensionless damping parameter b� for the second mode (k ¼ 2). Dimensionless parameters: � ¼ 0,
� ¼ 0:1, and f ¼ 0:26.
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mode). The second di®erence is that a resonant response occurs over a much

narrower band of frequencies than with the ¯rst mode. A comparison between the

scales of the detuning parameter � on the frequency response plots for the second

and ¯rst modes shows that the values of � are a factor of 10 smaller for the second

mode.

Figures 18 to 19 are the frequency response of the resonator showing the in°uence

of the fringe parameter f. Figures 20 to 21 illustrate the in°uence of the excitation

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01
0

0.2

0.4

0.6

0.8

1

σ

a

f = 0.0
f = 0.26
f = 0.5

Fig. 18. Frequency response of a uniform cantilevered resonator using the MMS showing the in°uence of
the fringe correction for the second mode (k ¼ 2). Dimensionless parameters: � ¼ 0, � ¼ 0:1, and

b� ¼ 0:001.
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Fig. 19. Phase response of a uniform cantilevered resonator using the MMS showing the in°uence of the
fringe correction for the second mode (k ¼ 2). Dimensionless parameters: � ¼ 0, � ¼ 0:1, and b� ¼ 0:001.
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parameter �. The in°uence of these parameters on the resonator in the second mode

is nearly the same as what was seen in the ¯rst mode.

7.3. Model limitations

By using the Euler�Bernoulli theory, the model is limited to long and thin beams

in which a length�thickness ratio ð‘=hÞ of 10 for the ¯rst mode,37 or 100 or greater
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Fig. 20. Frequency response of a uniform cantilevered resonator using the MMS showing the in°uence of

the dimensionless excitation parameter � for the second mode (k ¼ 2). Dimensionless parameters: � ¼ 0,

f ¼ 0:26, and b� ¼ 0:001.

-0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02
0

0.5

1

1.5

2

2.5

3

3.5

σ

γ

δ = 0.045
δ = 0.1
δ = 0.2

Fig. 21. Phase response of a uniform cantilevered resonator using the MMS showing the in°uence of the

dimensionless excitation parameter � for the second mode (k ¼ 2). Dimensionless parameters: � ¼ 0,
f ¼ 0:26, and b� ¼ 0:001.
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for any mode, are typically considered. The mode at which the beam is excited also

a®ects the validity of the Euler�Bernoulli theory. At modes beyond the primary

(k ¼ 1), the accuracy of the theory is questionable.37 The use of the Palmer

approximate formula for a fringe correction to the electrostatic force (9) allows

the model to be accurate for narrower beams than the traditional parallel plate

model (3). A width�thickness ratio greater than 5 and width�gap ratio greater than

10 are reasonably accurate for the Palmer ¯eld correction.21
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