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3-D Anatomically Based Dynamic
Modeling of the Human Knee to
Include Tibio-Femoral and
Patello-Femoral Joints
An anatomical dynamic model consisting of three body segments, femur, tibia and pa
has been developed in order to determine the three-dimensional dynamic response
human knee. Deformable contact was allowed at all articular surfaces, which were m
ematically represented using Coons’ bicubic surface patches. Nonlinear elastic sp
were used to model all ligamentous structures. Two joint coordinate systems wer
ployed to describe the six-degrees-of-freedom tibio-femoral (TF) and patello-femoral
joint motions using twelve kinematic parameters. Two versions of the model were d
oped to account for wrapping and nonwrapping of the quadriceps tendon around
femur. Model equations consist of twelve nonlinear second-order ordinary differe
equations coupled with nonlinear algebraic constraint equations resulting in
Differential-Algebraic Equations (DAE) system that was solved using the DI ifferential/
AI lgebraic SIystem SIolIver (DASSL) developed at Lawrence Livermore National Laborato
Model calculations were performed to simulate the knee extension exercise by ap
non-linear forcing functions to the quadriceps tendon. Under the conditions tested,
‘‘screw home mechanism’’ and patellar flexion lagging were predicted. Throughout
entire range of motion, the medial component of the TF contact force was found
larger than the lateral one while the lateral component of the PF contact force was fo
to be larger than the medial one. The anterior and posterior fibers of both anterior
posterior cruciate ligaments, ACL and PCL, respectively, had opposite force patterns
posterior fibers were most taut at full extension while the anterior fibers were most
near 90° of flexion. The ACL was found to carry a larger total force than the PCL at
extension, while the PCL carried a larger total force than the ACL in the range of 75
90° of flexion.@DOI: 10.1115/1.1644565#
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Introduction

Mathematical knee-joint models have been used to obta
better understanding of the complicated mechanical behavio
the substructures, which comprise the human musculoskeletal
tem including the knee joint. Three survey papers@1–3# have
appeared during the last decade to review mathematical k
models, which can be classified into either phenomenologica
anatomical based models. The later models are more sophistic
and are used to study the behavior of particular structures c
prising the human knee. Most of the three-dimensional anatom
based models that were developed to study knee behavior
static or quasistatic, and therefore did not predict the effects
dynamic inertial loads, which occur in many locomotor activiti
@4–14#. To the best of our knowledge, the model developed
Abdel-Rahman and Hefzy@15# is the only three-dimensional ana
tomical dynamic model of the knee joint available in the liter
ture. However, Abdel-Rahman and Hefzy’s model did not inclu
the patello-femoral joint, nor did it account for deformation of t
articular surfaces. The only anatomical dynamic models that
clude both tibio-femoral and patello-femoral joints are tw
dimensional~Tumer and Engin@16# and Ling et al.@17#!. The
current-state-of-the-art for dynamic knee models differs sligh
than that presented in the review conducted by Hefzy and Co

1Corresponding author: Phone:~419! 530.8234; Fax:~419! 530.8206; e-mail:
mhefzy@eng.utoledo.edu
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sion August 20, 2002; revision received August 25, 2003; Associate Editor: C
Vaughan.
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@3#, and can be summarized as follows:‘‘A single 3-D anatomical
dynamic model that includes both tibio-femoral and patel
femoral joints does not yet exist.’’

Anatomical based models require an accurate description o
articular surfaces in order to solve the contact problem. Since
dynamic model we propose to develop is by itself an elabor
and computationally demanding model, we will use a simplifi
contact theory to model the deformable contact at the artic
surfaces@18–20#. In this simplified theory, the normal stress b
tween two contacting surfaces is proportional to the shortest p
etration distance between these two surfaces.

In this work, we present for the first time the 3-D dynam
response of the knee joint using an anatomical based model
includes three body segments involving both tibio-femoral a
patello-femoral joints. The model allows for deformable contac
the articular surfaces and allows for the wrapping of the qua
ceps tendon around the femur, which occurs at large flex
angles. Model equations consist of twelve nonlinear second-o
ordinary differential equations coupled with nonlinear algebr
constraint equations. To solve this system of equations,
second-order differential equations were transformed into a
tem of first-order differential equations and then were combin
with the algebraic equations to produce a system of Differen
Algebraic Equations~DAE!. The DAE system is solved by usin
a DAE solver, namely the DI ifferential/AI lgebraic SIystem SIolIver
~DASSL! developed at Lawrence Livermore National Laborato
Model calculations are performed to simulate the knee exten
exercise, a commonly prescribed rehabilitation regimen@21#.
Nonlinear quadriceps forcing functions with different character
tics were obtained from the experimental data available in

-
. L.
2004 by ASME Transactions of the ASME
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literature@22# and used as input to the model. Results are repo
to describe the knee response including tibio-femoral and pate
femoral motions and contact forces and anterior and posterior
ciate ligament forces. A comparison of model predictions w
related data available in the literature is then presented.

Model Formulation

1 Kinematic Analysis. Three local coordinate systems o
axes were identified on the fixed femur and moving tibia a
patella as shown in Fig. 1. The tibial and patellar systems w
centroidal principal systems of axes, (y1

T ,y2
T ,y3

T) and
(y1

P ,y2
P ,y3

P), respectively; both of them were parallel to the fem
ral coordinate system at full extension. The femoralx1 axis, hav-
ing i¢ as a unit vector along it, was directed medially for a left kn
and laterally for a right knee, and the femoralx2 andx3 axes were

Fig. 1 Tibio-femoral and patello-femoral joint coordinate
systems.
Journal of Biomechanical Engineering
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directed anteriorly and proximally, respectively. The twelve d
grees of freedom describing the tibio-femoral joint~TFJ! and the
patello-femoral joint~PFJ! motions were defined using two join
coordinate systems@11,15,23#, and include 3 rotations and 3 trans
lations for each of the tibial and patellar moving systems. The T
( i¢,e¢2

T ,k¢T) and the PFJ (i¢,e¢2
P ,k¢P) coordinate systems are identifie

in Fig. 1; k¢T andk¢P are two unit vectors along the tibialy3
T and

patellary3
P local axes, respectively.

The position vectors of any point on bodyg @for tibia: g5T
and for patella:g5P] with respect to the femoral coordinate sy
tem and the local body coordinate system,R¢ g(X1

g ,X2
g ,X3

g) and
r¢g(x18

g ,x28
g ,x38

g), respectively, are related according to the fo
lowing transformation:

R¢ g5R¢ O
g 1@Rg#r¢g (1)

whereR¢ O
g (x1

g ,x2
g ,x3

g) is the position vector of the origin of thegth

body coordinate system with respect to the femoral coordin
system. Equation~1! is written using tensor notation in the fol
lowing form: Xi

g5xi
g1Ri j

g xj8
g , i , j 51,2,3, and the (333) rota-

tional matrix @Rg# that describes the orientation of thegth body
with respect to the femoral coordinate system is given as:

@Rg#5F s2
gc3

g s2
gs3

g c2
g

2c1
gs3

g2s1
gc2

gc3
g c1

gc3
g2s1

gc2
gs3

g s1
gs2

g

s1
gs3

g2c1
gc2

gc3
g 2s1

gc3
g2c1

gc2
gs3

g c1
gs2

g
G , g5T,P

(2)

wheresk
g5sinak

g , ck
g5cosak

g , k51,2,3. The rotation vectors,u¢T

andu¢ P describing the orientation of the tibia and patella, resp
tively, with respect to the femoral coordinate system are thus w
ten as:

u¢T52a1
Ti¢2a2

Te¢2
T2a3

Tk¢T, u¢P52a1
Pi¢2a2

Pe¢2
P2a3

Pk¢P (3)

wherea1
T ~knee flexion!, a3

T ~tibial internal rotation!, a2
T5(p/2

6Abduction), a1
P ~patellar flexion!, a3

P ~lateral patellar tilt! and
a2

P5(p/26Patellar lateral rotation); a positive sign is used f
Fig. 2 3-D model of the knee joint „tibio-femoral and patello-femoral joints …

showing the collateral and cruciate ligaments
FEBRUARY 2004, Vol. 126 Õ 45
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Fig. 3 Initial and final positions during knee extension exercise
simulation
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the right knee and a negative sign for a left knee@11,15,23#. The
relative locations of tibia and patella with respect to the femur
any position are thus described byy, a vector of dimension (n
512) consisting of twelve independent kinematic parameters

y5~x1
T ,x2

T ,x3
T ,a1

T ,a2
T ,a3

T ,x1
P ,x2

P ,x3
P ,a1

P ,a2
P ,a3

P! (4)

2 Mathematical Representation of the Articular Surfaces.
The articular surfaces of the distal femur and the posterior pat
along with the planar tibial plateaus were mathematically rep
sented using Coons’ parametric bicubic surface patches as sh
in Fig. 2. The cartesian coordinates of any point on a surface p
are expressed as bicubic functions of two local parametric c
dinates,w1 andw2 , in the range of 0 to 1 over the patch. The
functions were determined in terms of the coordinates of the
ner points, which were obtained by digitizing a cadaveric spe
men. Details of this mathematical procedure are given by He
and Yang@11#.

3 Joint Loads

Quadriceps Tendon Force.Two cases were considered in th
analysis to allow for the wrapping~Fig. 3a! and nonwrapping
~Figs. 2 and 3b! of the quadriceps tendon around the femur. F
the non-wrapping case, the direction of quadriceps tendon f
was assumed parallel to a line of lengthLq, joining the patellar
basis, pointb, and the attachment of the quadriceps muscle, p
q. The components of the quadriceps force expressed in the fe
ral system,Fi

q , i 51,2,3, can thus be written in terms of the s
kinematic parameters describing PFJ motions as follows:

Fi
q5FqLi

q/Lq (5)

where Fq is the magnitude of the quadriceps tendon force,Li
q

5(Xi
q2xi

P2Ri j
Pxj

b) are the femoral components of the positio
vector of pointq with respect to pointb, andXi

q and xj
b are the

components of the local coordinates of pointsq and b, respec-
tively.

Wrapping occurs at large flexion angles, normally greater t
70° of knee flexion as shown in Fig. 3a. In this situation, the
direction of the quadriceps force was assumed parallel to a lin
lengthLw, joining the patellar basis, pointb, and the most dista
femoral point where wrapping occurs, pointw, as shown in Fig.
3a. The components of the quadriceps force are then expresse

Fi
q5FqLi

w/Lw (6)

whereLi
w5(Xi

w2xi
P2Ri j

Pxj
b) are the femoral components of th

position vector of pointw with respect to pointb, andXi
w are the

femoral coordinates of pointw. Since pointw is a point on a
femoral patch, its cartesian coordinates,Xi

w , are bicubic functions
of its two parametric coordinates,w1

w andw2
w . To specify pointw,

two conditions are imposed. First, the plane containing the po
2004
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q, b andw is assumed parallel to the femoralx2 axis. Using the
scalar triple product this condition is expressed as:

« i2kLi
qLk

w50 (7)

where« i2k is the alternating tensor. Second, the lineLw ~the di-
rection of quadriceps force acting on patella! must be tangent to
the femoral surface. This condition is expressed mathematic
as:

Li
wNi

f~w1
w ,w2

w!50 (8)

whereNi
f are the femoral components of unit vector normal to t

femoral patch at pointw.
The components of the moment vector of the quadriceps fo

around the centroid of the patella,Mi
q , are expressed for both

nonwrapping and wrapping cases as follows:

Mi
q5 x̃i j

b Rk j
P Fk

q (9)

whereFk
q are given by Eq.~5! or ~6!, andx̃i j

b are the components
of the antisymmetric tensor@ x̃b# of the local position vector of the
patellar basis whose components arexj

b .

Contact Loads. Friction forces were neglected because of t
extremely low coefficient of friction of the articular surfaces@24#,
and a simplified model was used to allow for a deformable con
at the articulating surfaces of both TFJ and PFJ@18#. While the
subchondral bone was assumed to be rigid, the articulating c
lage was considered to be a thin layer of isotropic and line
elastic material. The normal stress,s, between two contacting
patches located on the moving and fixed surfaces was expre
as s5Ku, whereu is the penetration, i.e. the total deformatio
~of both patches! at a contacting point in a direction perpendicul
to the moving surface. The contact stiffness,K, was calculated as
K5$@(12n)E#/@(11n)(122n)t#% whereE, n andt are the elas-
tic modulus, Poisson’s ratio and the thickness of the contac
cartilage layers. By assuming E55 MPa, n50.45 andt52 mm
@18#, the contact stiffness was calculated asK55 N/mm3. In this
analysis, a uniform stress distribution over each patch was
sumed.

An iterative procedure was employed to determine all pairs
contacting patches. Each pair consisted of a source patch loc
either on tibia or patella and a target patch located on femur.
penetration distance,u, was calculated as the projection of a lin
ST onto the normal to the source patch from its center, poinS.
PointT, the target point, was identified as the point of intersect
of a line drawn from pointS, and parallel to a specified preferre
direction, with the target patch. To calculate TF and PF pene
tions, the preferred direction was assumed parallel to they3

T tibial
axis and they2

P patellar axis, respectively. Accordingly, the femo
ral coordinates of pointT were calculated using the following two
relations:
Transactions of the ASME
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« i j 3~Xi
T2Xi

S!Nj
d50, «1 jk~Xj

T2Xj
S!Nk

d50 (10)

where« i jk is the alternating tensor,Ni
d are the femoral compo

nents of a unit vector parallel to the preferred direction, andXi
T

andXi
S are the femoral coordinates of pointT andS, respectively.

In this iterative procedure, the coordinates of pointS are known.
Using the parametric nonlinear equations of the target patc
Eqs.~10! become a nonlinear algebraic system in two unknow
the parametric coordinates of the target point,w1

T and w2
T . The

penetration distance between two patches is then calculated u
the following relation:

u5~Xi
T2Xi

s!Ni (11)

whereNi are the femoral components of the outward unit vec
normal to the source patch at its center. If u is positive, no con
occurs. The components of the total TF and PF contact forcesFi

ct

andFi
cp , respectively, are expressed as:

Fi
ct5 (

m51

M1

@smAm~Ni !m#ct; Fi
cp5 (

m51

M2

@smAm~Ni !m#cp

(12)

where the subscriptm refers to themth source contacting patch,A
and s are the patch area and the patch normal contact str
respectively, andM1 and M2 are the total numbers of the tibia
and patellar contacting patches, respectively; superscriptsct and
cp refer to cIontacting tIibial patches within the TFJ and cIontacting
pIatellar patches within the PFJ, respectively. The component
the total moment vectors of the tibial and patellar contact for
around the tibial and patellar centroids, respectively, are expre
as follows:

Mi
ct5Rk j

T (
m51

M1

@~ x̃i j !msmAm~Nk!m#ct;

Mi
cp5Rk j

P (
m51

M2

@~ x̃i j !msmAm~Nk!m#cp (13)

where x̃i j are the components of the antisymmetric tensor of
local position vector of pointS of the mth contacting patch de-
scribed by its componentsxi . Equations~10!–~13! show that the
contacting forces and their moments are expressed in terms o
twelve kinematic parameters describing TFJ and PFJ motions,
the parametric coordinates of the target points located on
femoral patches that are in contact with either the tibia or
patella.

Ligamentous Forces.Along with the posterior capsule, th
lateral and medial collaterals, and the anterior and posterior
ciates were modeled as shown in Fig. 2. Using 12 discrete fi
bundles, these ligamentous structures were represented using
linear spring elements whose force-elongation relationships
cluded quadratic and linear regions@15,18# as follows:

~F,!n5H 0, «n<0

~kq!n~Ln2L0
n!2, 0,«n,2«0

~k,!n@Ln2~11«0!L0
n#, «n>2«0

n51,2, . . . ,12 (14)

where «n, (kq)n, (k,)n, Ln and L0
n are the strain, the stiffnes

coefficients for the quadratic and linear regions, and the cur
length and slack length of thenth element, respectively. The linea
range threshold was specified as«050.03. The coordinates of th
ligamentous insertion points, the different slack lengths and
stiffness coefficients were obtained using Abdel-Rahman
Hefzy’s data@15#. The components of the resultant of the ligame
tous forces acting on the tibia,Fi

, , expressed in the femoral co
ordinate system are written as:
Journal of Biomechanical Engineering
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Fi
,5(

n51

12

~F,!nLi
n/Ln (15)

and the components of the resultant moment about the tibial
ter of mass of the ligamentous forces,Mi

, , expressed in the tibia
coordinate system are expressed as follows:

Mi
,5(

n51

12

x̃i j8
nRk j

T ~Fk
,!n (16)

whereLi
n are the femoral components of the position vector of

nth ligamentous structure’s femoral insertion with respect to
tibial insertion point and expressed as:

Li
n5Xi

n2xi
T2Ri j

T xj8
n (17)

where Xi
n and xj8

n are the local coordinates of the femoral an
tibial insertion points, respectively, andx̃i j8

n are the components o
the antisymmetric tensor of the local position vector of the tib
insertion of thenth ligamentous structure. Equations~15!, ~16! and
~17! show thatFi

, andMi
, are explicitly written as functions of the

six tibial kinematic parameters.

Patellar Ligament Force. Connecting the tibial tuberosity
point t of local coordinatesxj

t , to the patellar apex, pointa of
local coordinatesxj

a , the patellar ligament is modeled as a line
spring whose tensile force is expressed as:

Fp5kp~Lp2L0
p! (18)

wherekp, Lp andL0
p are the stiffness, the current length and t

slack length of the patellar ligament. The stiffnesskp was assumed
to have a value of 200 N/mm@25#, and the slack lengthL0

p was
specified to allow a ratio of 0.6 between the patellar ligam
force and the quadriceps force at 90° of flexion@11#. The femoral
componentsLi

p of the position vector of pointa with respect to
point t are expressed as:

Li
p5xi

P1Ri j
p xj

a2xi
T2Ri j

T xj
t (19)

The components of the patellar ligament force acting on the t
and the patella,Fi

pt and Fi
pp , respectively, with respect to th

femoral coordinate system, are then written as;

Fi
pt5FpLi

p/Lp, Fi
pp52FpLi

p/Lp (20)

Also, the components of the moments of the patellar ligam
force around the tibial and the patellar centroids, expressed in
corresponding local coordinate system are written as

Mi
pt5 x̃i j

t Rk j
T Fk

pt , Mi
pp5 x̃i j

a Rk j
P Fk

pp (21)

wherex̃i j
t andx̃i j

a are the components of the antisymmetric tens
of the local position vectors of the tibial tuberosity and the pate
apex. Equations~18!–~21! indicate that the patellar ligament forc
and its moments around the patellar and tibial centroids are
plicitly written in terms of the local coordinates of pointst anda,
and the twelve motion parameters,xi

T and a i
T , and xi

P and a i
P ,

describing PFJ and TFJ motions, respectively.

4 Equations of Motion. Three Newton and three Eule
equations are written for each of the moving tibia and pate
resulting in a system of 12 differential equations of the seco
order that describes patello-femoral and tibio-femoral motio
Newton equations are written with respect to the fixed femo
coordinate system of axes as~superscript T for tibia and P for
patella!:

Wi
T1Fi

ct1Fi
pt1Fi

,2mTẍi
T50, i 51,2,3 (22)

Wi
P1Fi

cp1Fi
pp1Fi

q2mPẍi
P50, i 51,2,3 (23)
FEBRUARY 2004, Vol. 126 Õ 47
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where ẍi
T and ẍi

P are the components of the accelerations of
tibial and patellar centers of masses, respectively, with respe
the fixed femoral coordinate system; (mT,Wi

T) and (mP,Wi
P) are

the masses and weights’ components of the tibia and the pa
respectively;Fi

ct , Fi
pt and Fi

, are the components of total TF
contact force, the patellar ligament force and the resultant of
ligamentous forces, respectively, all acting on the tibia;Fi

cp , Fi
pp

and Fi
q are the components of the total PFJ contact force,

patellar ligament force and the quadriceps force, respectively
acting on the patella.

Euler equations are written in terms of the local tibial and p
tellar centroidal principal coordinate systems, (y1

T ,y2
T ,y3

T) and
(y1

P ,y2
P ,y3

P), respectively. Using tensor notation, the compone
of the tibial and patellar angular velocities and angular accel
tions vectors, denoted byu̇ i8

g and ü i8
g , respectively (g5T for

tibia and g5P for patella!, are expressed, with respect to th
respective local principal system of axes as follows:

u̇ i8
g52Rj i

g ~Ujm
g 1ak

gUjk,m
g !ȧm

g (24)

ü i8
g52Rj i

g ~Ujm
g 1ak

gUjk,m
g !äm

g 2Rj i
g ~Ujm,p

g 1Ujp,m
g

1ak
gUjk,mp

g !ȧp
gȧm

g (25)

where Ujk,m
g 5]Ujk

g /]am
g and Ui j

g are the components of a tran
formation matrix@Ug# which are defined using the nomenclatu
of Eq. ~2! as:

@Ug#5F 1 0 c2
g

0 c1
g s1

gs2
g

0 2s1
g c1

gs2
g
G (26)

Euler equations of motion are thus written as:

Mi
ct1Mi

pt1Mi
,2~ I Tü8T! i2

1

2
« i jk@~ I Tu̇8T!ku̇ j8

T2~ I Tu̇8T! j u̇k8
T#

50, i 51,2,3 (27)

Mi
cp1Mi

pp1Mi
q2~ I Pü8P! i2

1

2
« i jk@~ I Pu̇8P!ku̇ j8

P2~ I Pu̇8P! j u̇k8
P#

50, i 51,2,3 (28)

where« i jk is the alternating tensor;Mi
ct , Mi

pt , Mi
, are the tibial

components of the moments about the tibial center of mass o
TFJ contact force, the patellar ligament force and all ligament
forces, respectively;Mi

cp , Mi
pp and Mi

q are the patellar compo
nents of the moments about the patellar center of mass of the
contact forces, the patellar ligament force, and the quadric
force, respectively;I i

T andI i
P are the principal moments of inerti

of the leg and patella about their respective centroidal princ
axes, respectively. The inertial tibial parameters were spec
according to the anthropometric data available in the literat
@15# as mT54.0 kg, I 1

T50.0672 kg m2, I 2
T50.0672 kg m2 and I 3

T

50.005334 kg m2. The inertial patellar parameters were assum
as follows: mP50.1 kg, I 1

P50.000015625 kg m2, I 2
P

50.00003125 kg m2 and I 3
P50.000015625 kg m2.

Two cases have been identified: wrapping and non-wrappin
the quadriceps tendon around the femur. In the non-wrapping
ation, the system of equations to be solved consists of 12 non
ear second-order differential equations~Eqs.~22!, ~23!, ~27!, ~28!
andk1 nonlinear algebraic equations in (121k1) unknowns where
k152 (M11M2) and M1 and M2 are the numbers of the tibia
and patellar contacting patches, respectively; for each contac
patch, there are two nonlinear algebraic constraints given by
~10!. The unknowns in this DAE system of (121k1) equations are
the 12 kinematic parameters defined in Eq.~4! and (M11M2)
pairs of parametric coordinates (w1

T ,w2
T) defining the target points
48 Õ Vol. 126, FEBRUARY 2004
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on the femoral patches that are in contact with the tibia and
tella. This DAE system consists thus of 12 nonlinear differen
equationsF(y,ẏ,ÿ,w,t)50 that can be decomposed into two pa
as follows:

F~y,ẏ,ÿ,w,t !5F̄~y,ẏ,ÿ,t !1F̃~y,w!50 (29)

and k1 nonlinear algebraic constraintsG(y,w)50 wherey is a
vector of dimension 12 containing the 12 kinematic parame
@see Eq. 4#, and w is a vector of dimensionk1 containing the
unknown parametric coordinates defining contact. In Eq.~29! ẏ
5dy/dt andÿ5dẏ/dt.

In the wrapping situation, two additional nonlinear algebra
equations@Eqs. ~7! and ~8!# are added to the DAE system. Th
corresponding two additional unknowns are the parametric co
dinates of the most distal point on the femur where wrapping
the quadriceps tendon occurs, (w1

w ,w2
w).

Solution Algorithm
The second-order DAE system is transformed to a first-or

system by relating joint motions~kinematic parameters! to their
velocities (n i

g ,v i
g), i 51,2,3. The resulting DAE system contain

24 first-order ordinary differential equations andk1 nonlinear al-
gebraic constraints@k152(M11M2) for non-wrapping situation
andk152(M11M211) for the wrapping situation#, and can be
written as:

F~y,ẏ,w,t !5F̄~y,ẏ,t !1F̃~y,w!50 @24 equations# (30a)

G~y,w!50 @k1 equations# (30b)

wherey is a vector of dimension 24 containing the 12 kinema
parameters and their velocities. FunctionsF̃(y,w) represent the
contribution of the contact forces~and the quadriceps force in th
wrapping situation! to the equations of motion.

In order to solve the DAE system the time span is divided in
time steps. At each time station,tn11 , components ofẏn11 are
approximated in terms ofyn11 andy at previous time steps usin
a Backward Differentiation Formula~BDF!. The DAE system,
defined in Eqs.~30a! and ~30b!, is thus transformed to the non
linear algebraic system:

F~yn11 ,wn11 ,tn11!50 (31a)

G~yn11 ,wn11!50 (31b)

A solution of the resulting system foryn11 and wn11 is thus
obtained evaluating iterativelyyn11

(m11) and wn11
(m11) in two steps.

First, wn11
(m) are calculated by solving the following system

equations:

G~yn11
~m! ,wn11

~m! !50 (32)

using the Newton-Raphson iteration method. Next,yn11
(m11) , the

approximation ofyn11 in the (m11)th iteration of a modified
differential form of the Newton-Raphson method, is calculat
using the following relation:

yn11
~m11!5yn11

~m! 2c@K ~yn11
~m! ,wn11

~m! ,tn11!#21F~yn11
~m! ,wn11

~m! ,tn11!

(33)
whereF is defined by Eq.~31a!, @K # is defined as@26#:

@K #5F]F

]yG1bF]F

] ẏG (34)

andb andc are two constants that change with the step size
order of BDF to speed up the rate of convergence.

The DI ifferential/AI lgebraic SIystem SIolver ~DASSL!, developed
by Petzold@27#, was used to solve the DAE system given by Eq
~30a!. This solver uses a Predictor-Corrector algorithm whe
starting at time stationtn , a predictor polynomial extrapolates th
values ofyn11

(0) and ẏn11
(0) at time stationtn11 based on the values
Transactions of the ASME



l

g

s

e

t

e

a

a

f

ion
l
nd
he
en-
gle
t the
nee
c-
of y at earlier time stations. Then a corrector utilizes a BDF
transform~30a! into ~31a!. Input to the DASSL includes the initia
and final times,to andtF , respectively, and the initial values ofy,
w and ẏ. These values satisfy the DAE system~Eqs. 30! at time
t5t0 . This was done by assuming initial values ofy at time t
5t0 , and calculating the initial values ofw andẏ by solving Eqs.
~30a! and ~30b!.

User-supplied sub-routines evaluate the load vectorF(y,ẏ,w,t)
and the stiffness matrix@K (y,ẏ,w,t)#. The stiffness matrix@K # is
divided into two parts:

@K ~y,ẏ,w,t !#5@K̄ ~y,ẏ,t !#1@K̃ ~y,w!# (35)

The stiffness matrix@K̄ #, which does not depend onw, was cal-
culated using Eq.~34! employing closed-form analytical expres
sions. On the other hand, the stiffness matrix@K̃ #, which depends
on w but does not depend onẏ, was determined by approximatin
the partial derivatives using a backward differentiation formula
follows:

K̃ i j ~y,w!5
]F̃ i

]yj
~y,w!>

F̃ i~y,w!2F̃ i@y2~Dyj !ej ,w̃#

Dyj
(36)

where the vectorw̃ is found by solvingGby2(Dyj )ej ,w̃c50 and
ej is the j th unit vector of dimensionn524, which is expressed a
ej5(0,0, . . .,0,1,0, . . . 0).

Model Calculations
In a test situation a forcing function was applied to simulat

knee extension exercise activity. This dynamic loading was
plied to the patella through the quadriceps tendon causing the
and patella to undergo 3-D motions while the femur was fixed
a horizontal position. The forcing functions, shown in Fig. 4, we
specified according to Grood et al.’s experimental data@22# where
the quadriceps force was measured during knee extension. G
et al. @22# reported that this force had a constant average valu
200 N in the range of 10 to 50 deg of knee flexion. This for
reached 345 N at full extension, and was 75 N at 90 deg. In
analysis, this forcing function will be referred to as the 200
quadriceps force. Two other forcing functions with a similar p
tern were employed to simulate higher levels of quadriceps c
tractions: 400 N and 600 N quadriceps forces. The 400 N and
N quadriceps forcing functions were specified such that they h
value of 75 N at 90 deg that increased to 400 N and 600
respectively, as the knee extended to 50 deg remained con
until 10°, and increased to 530 N and 735 N, respectively, at
extension.

In this simulation, the tibia and the patella were assumed
begin their motions from rest. The initial position is depicted
Fig. 3a and was defined according to the experimental data av
able in the literature data@10,11,13# by specifying the following

Fig. 4 Forcing functions applied to the quadriceps tendon to
simulate knee extension exercise.
Journal of Biomechanical Engineering
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kinematic parameters: tibial flexion of 89.80 deg, patellar flex
of 71.26 deg, varus~adduction! angle of 4.61 deg, tibial interna
rotation of 22.96 deg patellar medial rotation of 0.25 deg, a
patellar medial tilt of 0.46°. For each forcing function, and as t
simulation progressed from the initial position, the quadriceps t
don continued to wrap around the femur until the flexion an
decreased to a point when wrapping stopped. It was found tha
nonwrapping started at 74 deg, 74.14 deg and 74.50 deg of k
flexion for the 200 N, 400 N and 600 N quadriceps forcing fun

Fig. 5 Duration of knee extension exercise for different quad-
riceps forcing functions

Fig. 6 Internal-external tibial rotations and varus-valgus rota-
tions versus knee flexion angle for different quadriceps forcing
functions

Fig. 7 Patellar flexion angle versus knee flexion angle for dif-
ferent quadriceps forcing functions
FEBRUARY 2004, Vol. 126 Õ 49
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tions, respectively. The corresponding patellar flexion angles w
57.63, 57.91 and 58.22 deg, respectively. Figure 3b shows the
predicted final position when the 200 N quadriceps forcing fu
tion was used. Figures 3a and 3b show that with knee extension
the tibia rotated externally~the ‘‘screw home mechanism’’! which
provides verification for the dynamic simulation. Addition
model validation is obtained by studying the changes in the p
dicted positions of the TF and PF contact with extension. Figu
3a and 3b show that as the knee was extended, the location of

Fig. 8 Medial and lateral components of the tibio-femoral con-
tact force versus knee flexion angle for different quadriceps
forcing functions

Fig. 9 Lateral and medial components of the patello-femoral
contact force versus knee flexion angle for different quadriceps
forcing functions

Fig. 10 Forces in the anterior and posterior fibers of the ACL
versus knee flexion angle for different quadriceps forcing func-
tions
50 Õ Vol. 126, FEBRUARY 2004
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TF contact moved posteriorly on the medial tibial plateau a
anteriorly on the lateral plateau, which reflects an internal rotat
of the femur with respect to the tibia~an external rotation of the
tibia with respect to the femur!. Also, and as expected, the loca
tion of the TF contact on the femur moved distally on t
condyles. These figures also show that as the knee was exte
the PF contact area moved proximally on the femur. It was a
found, as shown in Figs. 2 and 3b, that the PF contact moved
distally on the patella with knee extension. Fig. 5 shows that
duration of the knee extension exercise decreases as the lev
the quadriceps forcing function increases, which also verifies
dynamic analysis. Figure 6 shows that as the tibia was exten
from 90° to full extension, it underwent an average of 18.5 deg
external rotation and 4 deg of valgus rotation~abduction!. ‘‘Patel-
lar lagging,’’ which occurs with knee flexion, was also predict
as shown in Fig. 7.

Figure 8 shows that the medial component of the TF con
force was larger than the lateral component for all tested si
tions. This figure also shows that the medial component of the
contact force doubled during the last 30 deg of knee extens
reaching a maximum at full extension. Figure 9 shows that
lateral component of the PF contact force was much larger tha
medial component for all tested conditions. Both medial and
eral components of the PF contact force had their largest value
the range of 45 to 60 deg of knee flexion.

Figure 10 shows that as the knee was extended from the 90
position to around 35 deg of flexion, the tension in the ACL w
greatest in its anterior fibers. As the flexion angle decreased,
tension decreased while tension in the posterior fibers increa
and became dominant. Figure 11 shows that the anterior fibe
the PCL carried large forces as the knee was in a flexed posi
These forces decreased as the knee was extended. The pos
fibers of the PCL were in tension in the last 10 deg of kn
extension. At full extension, the forces in the posterior fibers w
greater than those in the anterior fibers, but much smaller than
large forces that were found in the anterior fibers near 90 de
flexion.

Discussion and Conclusions
A review of the literature reveals that most of the publish

anatomically based dynamic knee models are 2-D@1–3#. Abdel-
Rahman and Hefzy’s@15# model is the only anatomical mode
available in the literature that predicts the three-dimensional
namic response of the joint under impact loads. Yet, this mo
was limited in that it was only for the tibio-femoral joint, assume
a rigid contact formulation, and used a spherical representation
the femoral articular surfaces. In this paper, a three-dimensio
anatomically based dynamic model of the knee that includes b

Fig. 11 Forces in the anterior and posterior fibers of the
PCL versus knee flexion angle for different quadriceps forcing
functions
Transactions of the ASME
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tibio-femoral ~TF! and patello-femoral~PF! joints is presented.
The model allows for deformable contact and for a piecew
mathematical representation of the femoral articular surfaces.
model also allows for wrapping of the quadriceps tendon aro
the femur that occurs at large flexion angles.

The system of equations forming anatomically based dyna
models is a system of Differential-Algebraic Equations~DAE!.
Several techniques have been proposed to solve the DAE sy
that describes the dynamic response of the knee@3#. Most of these
techniques were limited in that they could not solve the com
cated DAE system that represents the three-dimensional situa
In this paper, the DI ifferential/AI lgebraic SIystem SIolIver, DASSL
~developed at Lawrence Livermore National Laboratory!, was
used to solve the complex DAE system to obtain the thr
dimensional response of the TF and PF joints under dynamic lo
ing. In order to use this solver, user-supplied subroutines w
developed to evaluate the stiffness matrix of the system. Clo
form analytical expressions were written in terms of the kinema
parameters to determine the contributions of the ligamentous
patellar tendon forces, and the quadriceps force in the n
wrapping situation to the stiffness matrix. On the other hand,
contributions of the contact forces and the quadriceps force in
wrapping situation to the stiffness matrix were determined
merically using backward differentiation formulas.

The dynamic response of the knee joint is much different fr
the static response@28#. Hence, it is hard to compare the prese
model predictions with similar data reported elsewhere beca
almost all of the data available in the literature that describes
behavior of the human knee joint are static or quasi-static in
ture. In the following, and within these qualifications, model p
dictions will be discussed and compared with those available
the literature.

The tested condition was used to simulate the knee exten
exercise, a common rehabilitation regimen@21#. The forcing func-
tions applied to the quadriceps tendon were specified accordin
the experimental data available in the literature that quan
quadriceps forces during a knee extension exercise@22#.

The classic ‘‘screw-home’’ pattern described by many inve
gators@29# was observed from model predictions. As the knee w
extended from 90 deg of flexion to full extension, the tibia rota
externally an average of 18.5 deg. This predicted amount of
ternal rotations is consistent with the experimental values repo
in the literature~10 deg by Shoemaker et al.@29#, 14.5 deg by
Biden et al.@30#, 20 deg by FitzPatrick@31#, and a range of 14 to
36 deg by Wilson et al.@32#!. Model calculations also show tha
as the knee was extended from 90 deg to about 55 deg of flex
it did not rotate either in valgus or in varus. As the flexion ang
further decreased, the tibia went into valgus~abduction!. The dy-
namic simulation indicated that the tibia was ab-ducted an ave
of 5 deg as the knee was extended from 55 deg of flexion to
extension. These results are consistent with those reported by
son et al. @32# where the authors used two testing conditio
~fixed tibia and fixed femur! and 13 knees to describe the kn
movements that are coupled with passive knee flexion~no
internal-external torques, no varus-valgus torques, no ante
posterior loads!. They reported that as the knee was extended
flexed from a 50 deg of flexion position, it was ab-ducted a
ad-ducted on average 5 deg and 1 deg, respectively. They
reported that when the femur was fixed~similar to our numerical
simulation!, the knee was neither abducted nor adducted as it
flexed from 50 deg to 90 deg of flexion, and was abducted 5
as it was extended from 50 to 0 deg of flexion, which is consist
with our model predictions.

Model calculations have also shown that the anterior and p
terior fibers of both anterior cruciate ligament~ACL! and poste-
rior cruciate ligament~PCL! had opposite force patterns. The po
terior fibers of the ACL were slack in the range of 90 to 60 deg
flexion, and tightened progressively as the knee was exten
reaching a maximum at 0 deg of knee flexion. The anterior fib
Journal of Biomechanical Engineering
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of the ACL were most taut at 90 deg; the tension decreased a
knee was extended. The forces in the anterior fibers of the P
were large at 90 deg of flexion, increased slightly with knee
tension to a maximum around 75 deg, and then decreased pro
sively until they vanished at 0 deg. On the contrary, the forces
the posterior fibers of the PCL were much smaller: they vanis
in the range of 90 to 30 deg and then increased slightly to rea
maximum at 0 deg. These results are in agreement with th
reported in the literature to describe the function of the ante
and posterior fibers of both ACL and PCL@33–36#.

Model calculations also show that the total force in the AC
~anterior and posterior bundles! reaches a maximum at full exten
sion during the knee extension exercise. At this position, the fo
in the PCL is comparatively small, which indicates that the AC
carries a larger total force than the PCL at full extension durin
knee extension exercise. Also, and in the range of 75 to 90 de
knee flexion, the forces in the anterior fibers of the PCL~which
are maximum! are greater than the forces in the anterior fibers
the ACL ~which are also maximum!. The posterior fibers of the
PCL and the posterior fibers of the ACL do not carry a load in
range of 75 to 90 deg of flexion. These data thus indicate that
total force in the PCL is larger than the total force in the ACL
the range of 75 to 90 deg of flexion. These results are in ag
ment with Wilk et al.’s data@37# reporting that maximum poste
rior and anterior tibio-femoral shear forces occurred around
and 0 deg of flexion, respectively. This is in agreement with o
model calculations since posterior and anterior tibio-femoral sh
forces are resisted by the PCL and ACL, respectively. Also,
model calculations have shown that the maximum forces car
by the ACL at full extension are larger than the maximum forc
carried by the PCL near 90 deg of flexion. These findings
consistent with other investigators’ data reporting that the grea
amount of tibial displacement occurs within the last 30 deg
knee extension during knee extension exercise@22,37–39#.

It was also found that the medial component of the tib
femoral contact force was always larger than the lateral com
nent. It is hard to compare these results with those available in
literature since, and to the best of our knowledge, no data has
reported to compare the medial and lateral components of
tibio-femoral contact force during knee extension exercise. N
ertheless, it has been reported that the medial condyle ca
more load than the lateral condyle during a closed chain exer
@40–42#.

Model calculations also show that the ratio of the total pate
femoral~PF! contact force to the quadriceps force decreased fr
nearly 1.1 at 80 deg to 0.45 near full extension as shown in F
12. This is in agreement with other model predictions and w

Fig. 12 Ratio of total patello-femoral contact force to quadri-
ceps force versus knee flexion angle: comparison between
model predictions and published experimental data and other
quasi-static models’ predictions
FEBRUARY 2004, Vol. 126 Õ 51
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published data from in vitro studies. Figure 12 shows a comp
son between the present model predictions and those of
Eijden et al.’s@43# and Gill and O’Connor’s@44# models, and the
experimental data of Ahmed et al.@45# and Buff et al.@46#. Figure
12 shows that the present model predictions are more in ag
ment with Ahmed et al.’s@45# in vitro study than that of Buff
et al. @46#.

Model calculations also show that the component of the
contact force on the lateral side is always greater than the com
nent on the medial side. These results are in agreement with t
obtained from the 3-D static models developed by Hefzy a
Yang @11# and Hirokawa@14# who has also reported larger conta
forces on the lateral side. Also, our model calculations are
agreement with the experimental data available in the litera
describing patello-femoral contact. The present results indic
that the contact area on the lateral patellar facet is larger than
on the medial facet at all flexion angles~this is because contac
forces are based on contact areas in the present model!. This is in
agreement with Hille et al.@47#, Hefzy et al. @48#, and Hehne
et al. @49# who have reported larger contact areas on the lat
side. Model calculations have also shown that with knee ex
sion, the location of the PF contact moves proximally on the
mur and distally on the patella. These results are in agreem
with those reported in the literature describing the locations of
PF contact areas@Hefzy and Yang@11#, Hefzy et al.@48#!.

Our model calculations also indicate that the pattern that
scribes how the patello-femoral~PF! contact forces changes wit
knee flexion depends on the level of quadriceps activation.
large quadriceps forces, the PF contact forces decrease as the
is extended from 60 deg to full extension. For small quadric
forces, the PF contact forces remain nearly constant in this ra
of motion. These data are in agreement with those reported in
literature by Cohen et al.@50# and Takeuchi et al.@51#. During an
unloaded open kinetic chain knee extension exercise, Cohen
@50# used a quadriceps force with a value of 62 N at 90 d
increasing to 137 N at 60 deg and remaining nearly constant f
60 to 20 deg~no data were reported for lower flexion angles!.
They reported that the associated PF contact force increased
120 N at 90 deg to 150 N at 70 deg and remained nearly cons
until 20 deg of flexion. Our model predictions show that for
forcing function ofFq5200 N ~quadriceps force was 75 N at 9
deg!, the total PF contact force increased slightly from 70 N at
deg to 175 N at 60 deg then remained nearly constant with fur
knee extension. A higher and constant quadriceps force of 30
was used by Takeuchi et al.@51# who reported that for physiologi
cally normal Q-angles, the PF contact forces decreased from
N at 60 deg to 143 N at 15 deg of knee flexion. At 90 deg
flexion, they reported a PF contact force of 241 N. Our mo
calculations show that for a forcing function ofFq5300 N, the
PF contact force increased from 70 N at 90 deg to 255 N at
deg, then decreased almost linearly to 200 N at 20 deg. The
dicted PF contact force has a lower value at 90 deg than tha
Takeuchi et al.’s probably because all dynamic quadriceps for
functions used in this study have a value of only 75 N at t
position.

These results suggest that 3-D anatomically based dyna
models of the human musculoskeletal joints are a versatile too
study the internal forces in these joints. These models are m
useful than those less sophisticated quasi-static models, bec
they can account for the dynamic effects of the external loa
However, the formulation of these dynamic models is critic
when it comes to obtaining a solution. The simpler 3-D dynam
model that accounts only for the tibio-femoral joint could not
solved using Moeinzadeh et al.’s formulation@52#. In the formu-
lation presented here, all coordinates of the ligamentous att
ment sites were dependent variables that were expressed in
of the independent kinematic parameters. In addition, these i
pendent kinematic parameters that describe tibio-femoral
patello-femoral motions were used to formulate the wrapping
52 Õ Vol. 126, FEBRUARY 2004
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the quadriceps tendon around the femoral surface and to m
the deformable contact at the articular surfaces. As a result,
possible to introduce more ligaments, to split each ligament i
several fiber bundles, to model the wrapping of the quadric
around the femur that occurs at large flexion angles, and to a
for more or fewer surface patches, as appropriate, to come
contact. This formulation allowed the solution of this intricate 3
dynamic model.

The present 3-D model can be used to analyze knee respon
dynamically applied load, which has particular application to
jury mechanics. Since most injuries to the knee involve dynam
loads, this model, which accounts for the inertial effects of tho
dynamic forces, will provide a valuable tool to study the under
ing mechanisms for these injuries. In this model, the menisci w
not included and the definition of the tibial articular surfaces w
not considered. No distinction was made between the medial
lateral tibial articular surfaces. However, further developments
incorporating the menisci, differentiating between the medial a
lateral articular surface geometry, particularly in terms of poste
slope and medio-lateral inclination, and modeling muscular
contractions will allow the model to be used to study daily livin
activities where dynamic axial compressive forces act on the j
as in walking and running.
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