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e-mail: dumitru.caruntu@utoledo.edu has been developed in order to determine the three-dimensional dynamic response of the
. 1 human knee. Deformable contact was allowed at all articular surfaces, which were math-
Mohamed Samir HBIZV ematically represented using Coons’ bicubic surface patches. Nonlinear elastic springs
Ph.D., PE. were used to model all ligamentous structures. Two joint coordinate systems were em-
e-mail: mhefzy@eng.utoledo.edu ployed to describe the six-degrees-of-freedom tibio-femoral (TF) and patello-femoral (PF)
joint motions using twelve kinematic parameters. Two versions of the model were devel-
Biomechanics and Assistive Technology oped to account for wrapping and nonwrapping of the quadriceps tendon around the
Laboratory femur. Model equations consist of twelve nonlinear second-order ordinary differential
Department of Mechanical, Industrial and equations coupled with nonlinear algebraic constraint equations resulting in a
Manufacturing Engineering Differential-Algebraic Equations (DAE) system that was solved using_tifferéntial/
The University of Toledo Algebraic §stem 8lver (DASSL) developed at Lawrence Livermore National Laboratory.
Toledo, Ohio, USA 43606 Model calculations were performed to simulate the knee extension exercise by applying

non-linear forcing functions to the quadriceps tendon. Under the conditions tested, both
“screw home mechanism” and patellar flexion lagging were predicted. Throughout the
entire range of motion, the medial component of the TF contact force was found to be
larger than the lateral one while the lateral component of the PF contact force was found
to be larger than the medial one. The anterior and posterior fibers of both anterior and
posterior cruciate ligaments, ACL and PCL, respectively, had opposite force patterns: the
posterior fibers were most taut at full extension while the anterior fibers were most taut
near 90° of flexion. The ACL was found to carry a larger total force than the PCL at full
extension, while the PCL carried a larger total force than the ACL in the range of 75° to
90° of flexion.[DOI: 10.1115/1.1644565

Introduction [3], and can be summarized as followA:single 3-D anatomical
. . . dynamic model that includes both tibio-femoral and patello-
Mathematical knee-joint models have been used to Obta'nfe‘ylporal joints does not yet exist.”

better understanding .Of the Complicated mechanical behavior %'Anatomical based models require an accurate description of the
the s_ubstru_ctures, which comprise the human musculoskeletal SAtticular surfaces in order to solve the contact problem. Since the
tem including the knee joint. Three survey papgts-3] have

d duri he | decad . h ical k dynamic model we propose to develop is by itself an elaborate
appeared during the last decade to review mathematica computationally demanding model, we will use a simplified

models, which can be classified into either phenomenological @8ntact theory to model the deformable contact at the articular
anatomical based models. The later models are more sophlstlcaggﬁace{w_zq_ In this simplified theory, the normal stress be-

and are used to study the behavior of particular structures cOfjeen two contacting surfaces is proportional to the shortest pen-
prising the human knee. Most of the three-dimensional anatomiga}ation distance between these two surfaces.
based models that were developed to study knee behavior werg, this work, we present for the first time the 3-D dynamic
static or quasistatic, and therefore did not predict the effects I@sponse of the knee joint using an anatomical based model that
dynamic inertial loads, which occur in many locomotor activitieshcludes three body segments involving both tibio-femoral and
[4-14]. To the best of our knowledge, the model developed Qyatello-femoral joints. The model allows for deformable contact at
Abdel-Rahman and Hefzj15] is the only three-dimensional ana-the articular surfaces and allows for the wrapping of the quadri-
tomical dynamic model of the knee joint available in the literaceps tendon around the femur, which occurs at large flexion
ture. However, Abdel-Rahman and Hefzy’s model did not includgngles. Model equations consist of twelve nonlinear second-order
the patello-femoral joint, nor did it account for deformation of therdinary differential equations coupled with nonlinear algebraic
articular surfaces. The only anatomical dynamic models that ivenstraint equations. To solve this system of equations, the
clude both tibio-femoral and patello-femoral joints are twosecond-order differential equations were transformed into a sys-
dimensional(Tumer and Engin16] and Ling et al.[17]). The tem of first-order differential equations and then were combined
current-state-of-the-art for dynamic knee models differs slightlyith the algebraic equations to produce a system of Differential
than that presented in the review conducted by Hefzy and Cookigebraic Equation§DAE). The DAE system is solved by using
a DAE solver, namely the ifferential/Algebraic §stem ®lver
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directed anteriorly and proximally, respectively. The twelve de-

Patellar tilt grees of freedom describing the tibio-femoral joiiiJ) and the
TFJ patello-femoral joint(PFJ motions were defined using two joint
Pl coordinate systenfd1,15,23, and include 3 rotations and 3 trans-
Patellar \ is s - Iations for each of the tibial and patellar moving systems. The TFJ
‘i___ Tibial (| kT) and the PFJlQ kP) coordinate systems are identified

extension

in Fig. 1; kT andkP are two unit vectors along the t|b|§t|3 and
—————— ' . patellaryg’ local axes, respectively.

Rg The position vectors of any point on body[for tibia: y=T
and for patellary=P] with respect to the femoral coordinate Sys-
tem and the local body coordinate systeIRt(X 7.,X%) and
F7(x17,x57,x3"), respectively, are related accordlng to the fol-
lowing transformation:

Patellar
rotation

abduction

B Femoral Articular Surface T o7 Tiblal RY= R7+ [R?’]FV (1)
EZD Tibial Plateaus il external h
wu Posterior Patellar Articular Surface 0T \ Fotation whereRY, L(xY ,x¥ ,xY) is the position vector of the origin of thg

body coordinate system with respect to the femoral coordinate
system. Equatioril) is written using tensor notation in the fol-
lowing form: XY= x/+ Ri‘jxj’y, i,j=1,2,3, and the (&3) rota-
tional matrix[R?] that describes the orientation of th& body

_ _ with respect to the femoral coordinate system is given as:
literature[22] and used as input to the model. Results are reported

to describe the knee response including tibio-femoral and patello- sjcy s3si ¢l
femoral motions and contact forces and anterior and posterior cr, M=| —cIsy—slcic]
ciate ligament forces. A comparison of model predictions witl
related data available in the literature is then presented.

Fig. 1 Tibio-femoral and patello-femoral joint coordinate
systems.

cici—sicysi  sisj|, y=T,P

sJsj—cjclic] —slci—clcis] cis}
)

Model Formulation wheres}=sinay, c}=cosay, k=1,2,3. The rotation vectors)’

1 Kinematic Analysis. Three local coordinate systems ofand o° describing the onentatron of the tibia and patella, respec-
axes were identified on the fixed femur and moving tibia arfdvely, with respect to the femoral coordinate system are thus writ-
patella as shown in Fig. 1. The tibial and patellar systems welfgh as:
centroidal principal systems of axes, yl(y2 ,y3) and bT:—all—azéI a3kT ZVD:—aT agez Dl3kp ©)
(yl y2 y3) respectively; both of them were parallel to the femo-
ral coordinate system at full extension. The femorakxis, hav- whereay (knee flexror) aj (tibial |nternal rotation, a;= (/2
ing T as a unit vector along it, was directed medially for a left kne& AdeCUO”) ay (patellar flexion, of (lateral patellar tilt and
and laterally for a right knee, and the femoxalandx; axes were az (/2= Patellar lateral rotation); a positive sign is used for

Quad tendon Patello-femoral

contact area

@@= mm ==

Lateral tibio-
femoral
contact area

Medial tibio-
femoral
contact area

1 LCL Lateral Collateral

2 AMC Anterior fibers of the Medial Collateral Ligament

3 OMC Obligue fibers of the Medial Collateral Ligament

4 DMC Deep fibers of the Medial Collateral Ligament

5 APC Anterior fibers of the Posterior Cruciate Ligament

6 PPC Posterior fibers of the Posterior Cruciate Ligament

7 AAC Anterior fibers of the Anterior Cruciate Ligament

8 PAC Posterior fibers of the Anterior Cruciate Ligament
abagt Apex, basis, femoral quadriceps insertion, tibial tuberosity

Fig. 2 3-D model of the knee joint (tibio-femoral and patello-femoral joints )
showing the collateral and cruciate ligaments
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Wrapping of quadriceps 0 of patella
tendon around the femur

Slesiors 2.5° of internal

rotation

uad force
Quad force Q

. Initial pasition b. Final predicted position
® 90° of knee flexion (full extension)

o 23° of internal rotation

o 71° of patellar flexion

Fig. 3 Initial and final positions during knee extension exercise
simulation

the right knee and a negative sign for a left kfg#,15,23. The q, b andw is assumed parallel to the femorgl axis. Using the
relative locations of tibia and patella with respect to the femur, atalar triple product this condition is expressed as:

any position are thus described By a vector of dimensionn a w_

=12) consisting of twelve independent kinematic parameters eiaklilic=0 ™)

T P P

y:(XI ’X; ’Xg ﬂI ) ,ag,xf,xs,xg,al ab 7a§) (4) wheree;, is the alternating tensor. Second, the lin# (the di-

rection of quadriceps force acting on patglfaust be tangent to

2 Mathematical Representation of the Articular Surfaces. the femoral surface. This condition is expressed mathematically
The articular surfaces of the distal femur and the posterior patel&s:
along with the planar tibial plateaus were mathematically repre- Wi W W
sented using Coons’ parametric bicubic surface patches as shown Li'Ni(wy ,w3)=0 (8)
in Fig. 2. The cartesian coordinates of any point on a surface pajgRereN' are the femoral components of unit vector normal to the
are expressed as b_|cub|c functions of two local parametric co@&moral patch at poin.
dinatesw, andws, in the range of 0 to 1 over the patch. These T components of the moment vector of the quadriceps force

functions were determined in terms of the coordinates of the cq: )\ 4 the centroid of the atell®, are expressed for both
ner points, which were obtained by digitizing a cadaveric speci- P . P

men. Details of this mathematical procedure are given by Hefglynwrapplng and wrapping cases as follows:
and Yang[11]. M?:?ibj RE,'FE (9)

3 Joint Loads whereF are given by Eq(5) or (6), and7<ibj are the components
Quadriceps Tendon Force.Two cases were considered in theof the antisymmetric tens§&®] of the local position vector of the

analysis to allow for the wrappingFig. 3a) and nonwrapping Patellar basis whose components afe

(Figs. 2 and B) of the quadriceps tendon around the femur. For contact Loads. Friction forces were neglected because of the
the non-wrapping case, the direction of quadriceps tendon forg@remely low coefficient of friction of the articular surfades],

was assumed parallel to a line of lendth, joining the patellar and a simplified model was used to allow for a deformable contact
basis, point, and the attachment of the quadriceps muscle, poigt the articulating surfaces of both TFJ and PE]. While the

. The components of the quadriceps force expressed in the fergghchondral bone was assumed to be rigid, the articulating carti-

ral systemF{, i=1,2,3, can thus be written in terms of the siXage was considered to be a thin layer of isotropic and linear-
kinematic parameters describing PFJ motions as follows: elastic material. The normal stress, between two contacting
F9=FaL9/Ld ) patches located on the moving and fixed surfaces was expressed

as o=Ku, whereu is the penetration, i.e. the total deformation

where F9 is the magnitude of the quadriceps tendon foricg, (of both patchesat a contacting point in a direction perpendicular
o the moving surface. The contact stiffnekswas calculated as

=(X{'—x{ —Rfx)) are the femoral components of the positiori<
. . . q b ={[(1-»)E]/[(1+v)(1—2v)t]} whereE, v andt are the elas-
vector of pointq with respect to poinb, and ;' and Xj are the tic modulus, Poisson’s ratio and the thickness of the contacting

components of the local coordinates of poigt@nd b, respec- cartilage layers. By assuming=5 MPa, v=0.45 andt=2 mm

tively. . .
Wrapping occurs at large flexion angles, normally greater th£ﬁ8]’ the contapt stiffness was cglcu_latedl@ss N/mn?. In this
analysis, a uniform stress distribution over each patch was as-

70° of knee flexion as shown in Figa3In this situation, the med
direction of the quadriceps force was assumed parallel to a line L . .
An iterative procedure was employed to determine all pairs of

Wi . i -
:‘Sr]r(igcg?aLl p ()Jicr)wltn\llcﬁetgevgrztgpl)li?\rgbgs::sulrso;)m;u;ngstzﬁor:v?wsitndggal cpntacting_ p_atches. Each pair consisted of a source patch located
3a. The components of the quadrice s:force are then ex ressé ither on tibia or patella and a target patch located on femur. The

) P q P P dS%Sl‘ietration distancey, was calculated as the projection of a line

Fa=FaLy/L" (6) STonto the normal to the source patch from its center, p8int
w w P —P.b PointT, the target point, was identified as the point of intersection

whereL"=(X{"—x; —Rj;x}’) are the femoral components of theof a line drawn from poin§, and parallel to a specified preferred
position vector of pointv with respect to poinb, andX}" are the direction, with the target patch. To calculate TF and PF penetra-
femoral coordinates of point. Since pointw is a point on a tions, the preferred direction was assumed parallel to/dhibial
femoral patch, its cartesian coordinats¥,, are bicubic functions axis and thQ/S patellar axis, respectively. Accordingly, the femo-
of its two parametric coordinates;’ andw} . To specify poinwv, ral coordinates of poinT were calculated using the following two
two conditions are imposed. First, the plane containing the pointslations:
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i3 XT=X3NI=0, &1 (XT-X3)NI=0 (10) 2
o e Fi=2 (FO"LIL" (15)
where g is the alternating tensoN; are the femoral compo- n=1

nentssof a unit vector parallgl to the preferred dlrect|on,. Xﬁd and the components of the resultant moment about the tibial cen-
and).(i are the femoral coordinates OT poifiands, respectively. ter of mass of the ligamentous forcdmf, expressed in the tibial

In @hls iterative proc_edure, _the coordlngtes of pdrdare known. coordinate system are expressed as follows:

Using the parametric nonlinear equations of the target patches,

Egs.(10) become a nonlinear algebraic system in two unknowns: 12

the parametric coordinates of the target poinf, andw) . The M{=> X"RL(FO)" (16)
penetration distance between two patches is then calculated using n=1

the following relation: whereL [ are the femoral components of the position vector of the

u=(X{ = X®N,; (11) n™ ligamentous structure’s femoral insertion with respect to its

. tibial insertion point and expressed as:
whereN; are the femoral components of the outward unit vector

normal to the source patch at its center. If u is positive, no contact LP=XP—x— Rﬁxj’” a7
occurs. The components of the total TF and PF contact foF¢gs,
andFP, respectively, are expressed as:

My M,

where X' and x;" are the local coordinates of the femoral and
tibial insertion points, respectively, amn are the components of
Fot_ 2 ot o 2 . f[he antisymmetric.tensor of the local position yector of the tibial
P2 [omAR(NDmI F ) [omAm(N) ] insertion of then™ ligamentous structure. Equatiotis), (16) and
(12) (17) show that{ andM! are explicitly written as functions of the

) ) six tibial kinematic parameters.
where the subscript refers to themth source contacting patch,

and o are the patch area and the patch normal contact stressPatellar Ligament Force. Connecting the tibial tuberosity,
respectively, and; and M, are the total numbers of the tibial point t of local coordinatey}, to the patellar apex, poird of
and patellar contacting patches, respectively; supersatpasd |ocal coordinatexf‘, the patellar ligament is modeled as a linear
cp refer to ontacting_tbial patches within the TFJ anduotacting  spring whose tensile force is expressed as:

patellar patches within the PFJ, respectively. The components of

the total moment vectors of the tibial and patellar contact forces FP=KP(LP—L) (18)
around the tibial and patellar centroids, respectively, are expressed .
as follows: . P y P wherekP, LP andL§ are the stiffness, the current length and the

" slack length of the patellar ligament. The stiffnéSsvas assumed
et of Y ot. to have a value of 200 N/mif25], and the slack length§ was
M; *RkimZ:l LX) mOmAm(Ni)m] ™ specified to allow a ratio of 0.6 between the patellar ligament
force and the quadriceps force at 90° of flexjdd]. The femoral
M2 componentd P of the position vector of poina with respect to
M{P= REjmgl [(Xij) mOmAm(N) m]°P (13) pointt are expressed as:
P a T Tt
where¥;; are the components of the antisymmetric tensor of the LP=x"+ Rijxj—xi — Rijx] (19)

local position vector of poinf of the m™ contacting patch de- The components of the patellar ligament force acting on the tibia
scribed by its components . Equations(10)—(13) show that the ang the patellaFP' and FPP, respectively, with respect to the
contacting forces and their moments are expressed in terms of {8 oral coordinate system, are then written as;

twelve kinematic parameters describing TFJ and PFJ motions, and

the parametric coordinates of the target points located on the FP'=FPLP/LP, FPP=—FPLP/LP (20)
femoral patches that are in contact with either the tibia or the )
patella. Also, the components of the moments of the patellar ligament

force around the tibial and the patellar centroids, expressed in the
Ligamentous Forces.Along with the posterior capsule, thecorresponding local coordinate system are written as
lateral and medial collaterals, and the anterior and posterior cru-
ciates were modeled as shown in Fig. 2. Using 12 discrete fiber MP'=%X;RGFE,  MPP=%3REFEP (21)
bundles, these ligamentous structures were represented using non- _, 2 . .
linear spring elements whose force-elongation relationships I#'€r€Xi; andx;; are the components of the antisymmetric tensors

cluded quadratic and linear regiof5,18 as follows: of the local p_osition vectors pf the tibial tuberosity and the patellar
apex. Equation§l8)—(21) indicate that the patellar ligament force
0, e"<0 and its moments around the patellar and tibial centroids are ex-
(F)n= (K9)n(LP—LD)2 0<s"<2¢, plicitly written in terms of the local coordinates of poirttanda,
o and the twelve motion parameterg, and o , andx” and ",
(KO"[L"=(1+eglgl,  &"=2¢g describing PFJ and TFJ motions, respectively.
n=12,...,12 (14) 4 Equations of Motion. Three Newton and three Euler

. . equations are written for each of the moving tibia and patella,
n qyn £yn n n X . . . ;

where ", (k)7 (k7)", L" and L, are the strain, the stiffness g iting in a system of 12 differential equations of the second
coefficients for the quadratlchand linear regions, and the currefifjer that describes patello-femoral and tibio-femoral motions.
length and slack length of the" element, respectively. The linearNewton equations are written with respect to the fixed femoral

range threshold was specified &g=0.03. The coordinates of the coordinate system of axes #superscript T for tibia and P for
ligamentous insertion points, the different slack lengths and thgje||3:

stiffness coefficients were obtained using Abdel-Rahman and

Hefzy's datg[15]. The components of the resultant of the ligamen- W +FO+FPHFf —mTx =0, i=1,2,3 (22)
tous forces acting on the tibi&, , expressed in the femoral co- P . ey PPy . PP _
ordinate system are written as: Wi+ FP+ R+ R -m% =0, 1=1,23 (23)
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wherex and %" are the components of the accelerations of then the femoral patches that are in contact with the tibia and pa-
tibial and patellar centers of masses, respectively, with respectt@ja. This DAE system consists thus of 12 nonlinear differential
the fixed femoral coordinate systemm{,W) and (m”,WF) are equationg=(y,y,y,w,t) =0 that can be decomposed into two parts

the masses and weights’ components of the tibia and the patefi, follows:
respectively;F*', FP' and F_f are the components of total TFJ F(y,y,9,w,0) = F(y,¥,¥,t) + E(y,w) =0 (29)
contact force, the patellar ligament force and the resultant of the

ligamentous forces, respectively, all acting on the tiBigh, FPP and k, nonlinear algebraic constrainG(y,w)=0 wherey is a

and FY are the components of the total PFJ contact force, tEgctor of dimension 12 containing the 12 kinematic parameters

. . . .[see Eg. 4 andw is a vector of dimensiork; containing the
gggier:gagggtirgirgtéﬂgce and the quadriceps force, respectively: usanknown parametric coordinates defining contact. In 9§) y

Euler equations are written in terms of the local tibial and pa- ?ri//?r:ear\]/\?régr%/gdtéituation two additional nonlinear algebraic
tellar centroidal principal coordinate systems,) (y2,ys) and equations Eqs. (7) and (8)] are added to the DAE system. The
(Y1,Y2,Y3), respectively. Using tensor notation, the componentgyresponding two additional unknowns are the parametric coor-
of the tibial and patellar angular velocities and angular acceleignates of the most distal point on the femur where wrapping of
tions VeCtOI’S, denoted byi’}/ and 0{7, reSpeCtively @:T for the quadriceps tendon OCCUW\/‘K,W‘Q’).

tibia and y=P for patella, are expressed, with respect to the

respective local principal system of axes as follows:

Solution Algorithm

9/ 7= —RY(U”.+ a?U% Ya? 24 . .
: i (Ujm + @icUjiem) @ (24) The second-order DAE system is transformed to a first-order
7=~ R (Ul + Ul m)édh— RY (Ul o+ UL system by relating.joint motionékinemgtic parameterso their.
' ’ ’ velocities (7, 7), i=1,2,3. The resulting DAE system contains
+afUl mp) apan (25) 24 first-order ordinary differential equations akgnonlinear al-

gebraic constraintfk;=2(M+M,) for non-wrapping situation

where U, ,=dUji/day, and Uj are the components of a trans-gpq, —2(M, +M,+1) for the wrapping situatiop and can be
formation matrix[ U”] which are defined using the nomenclaturgyritten as:

of Eq. (2) as: — -
1 0 o7 F(y,y.w,t)=F(y,y,t)+ F(y,w)=0 [24 equation} (30a)
2
(U= 0 ¢ s} 26) G(y,w)=0 [k; equation$ (30b)
0 —s crsY wherey is a vector of dimension 24 containing the 12 kinematic
1M parameters and their velocities. Functidh@/,w) represent the
Euler equations of motion are thus written as: contribution of the contact forcéand the quadriceps force in the
1 wrapping situationto the equations of motion.
Mi(:t+ Mipt+ Mif_(IT'érT)i_ _sijk[(IT'ayT)k'eer_(IT'erT)j 'el;T] In order to solve the DAE system the time span is divided into

2 time steps. At each time statiot},, ;, components of,., are

) approximated in terms of,,,; andy at previous time steps using

=0, =123 (27) @ Backward Differentiation FormuléBDF). The DAE system,
defined in Eqs(30a) and (30b), is thus transformed to the non-

M P+ MPP+MI— (175’ Py, — 5 ekl (1 Pg'P)kgj’ P_(IPg ") 6,71  linear algebraic system:
F(Yn+1,Wnt1,th+1)=0 (311)

. X et t ¢ o G(Yn+1:Wny1)=0 (31)
whereg;;, is the alternating tensoM{*, MP*, M are the tibial . . .
components of the moments about the tibial center of mass of fieSClution of the resulting system foYn- 1 ma+n1d W1 IS thus
TFJ contact force, the patellar ligament force and all ligamento@§tained evaluating iteratively(7;" and wi7; in two steps.
forces, respectivelyMc?, MPP andM{ are the patellar compo- First, _Wﬁrﬂ)l are calculated by solving the following system of
nents of the moments about the patellar center of mass of the FEyations:
contact forces, the patellar ligament force, and the quadriceps G(y™, wm)=0 (32)
force, respectivelyt] andlI are the principal moments of inertia n+i:Tn+l
of the leg and patella about their respective centroidal principasing the Newton-Raphson iteration method. NeAfit?, the
axes, respectively. The inertial tibial parameters were specifiagproximation ofy,,; in the (m+ 1)th iteration of a modified
according to the anthropometric data available in the literatudéfferential form of the Newton-Raphson method, is calculated
[15] asm'=4.0 kg, | {=0.0672 kgm, 1;=0.0672kgm andlj using the following relation:
=0.005334 kg rA. The inertial patellar parameters were assume -
as folows: P04 kg, ’ |§’=0.800015625 kgh 1 Y el WA e )RR W ’t"é)g)
=0.00003125 kg rhand|5=0.000015625 kg fa . ' . ' .

Two cases have been Identified: wrapping and non-wrapping §fiereF is defined by Eq(31a), [K]is defined a$26]:
the quadriceps tendon around the femur. In the non-wrapping situ- JF JF
ation, the system of equations to be solved consists of 12 nonlin- [K]= N Y
ear second-order differential equatidiisys. (22), (23), (27), (28) y y
andk; nonlinear algebraic equations in (£&;) unknowns where andb andc are two constants that change with the step size and
ki=2 (M;+M,) andM; and M, are the numbers of the tibial order of BDF to speed up the rate of convergence.
and patellar contacting patches, respectively; for each contactingrhe Dfferential/Algebraic §stem Slver (DASSL), developed
patch, there are two nonlinear algebraic constraints given by Hiy. Petzold27], was used to solve the DAE system given by Egs.
(10). The unknowns in this DAE system of (3X;) equations are (30a). This solver uses a Predictor-Corrector algorithm where
the 12 kinematic parameters defined in E4). and M,+M,) starting at time statioh,, a predictor polynomial extrapolates the

pairs of parametric coordinates] ,wJ) defining the target points values ofy(®, andy{?, at time statiort,, , based on the values

=0, =123 (28)

+b

(34)
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of y at earlier time stations. Then a corrector utilizes a BDF to 0 Knee Flexion Angle (deg.)

transform(30a) into (31a). Input to the DASSL includes the initial —
and final timest, andtg, respectively, and the initial values pf
w andy. These values satisfy the DAE systéEqgs. 30 at time s
t=ty. This was done by assuming initial valuesyfat timet 60
=1y, and calculating the initial values @f andy by solving Egs.
(30a) and (30b). 45

User-supplied sub-routines evaluate the load velefgry,w,t)
and the stiffness matri}< (y,y,w,t)]. The stiffness matrixK] is 30 1
divided into two parts: 15 1

[K(y,y,W,t)]:[K(y,y,t)]+[K(y,W)] (35) 0 f . i f

The stiffness matrixK ], which does not depend om, was cal- 0 02 04 06 08 1 12 14
culated using Eq(34) employing closed-form analytical expres- Time (seconds)

sions. On the other hand, the stiffness maftk, which depends Fio. 5 Duration of k tensi ise for different quad

onw but does not depend gn was determined by approximating 'Y uration ol knee extension exercise for ditierent quad-
. A - . T riceps forcing functions

the partial derivatives using a backward differentiation formula as

follows:

~ IF, ﬁi(y,w)fﬁi[yf(ij)q W] kinematic parameters: tibial flexion of 89.80 deg, patellar flexion
Kij(y,w) = === (y,w) = AV (36) of 71.26 deg, varugsadduction angle of 4.61 deg, tibial internal

i i rotation of 22.96 deg patellar medial rotation of 0.25 deg, and

where the vectoW is found by solvingGly—(Ay;)e; ,W|=0 and patellar medial tilt of 0.46°. For each forcing function, and as the

g is thej" unit vector of dimensiom= 24, which is expressed as simulation progressed from the initial position, the quadriceps ten-

g=(00,...0,10...0). don continued to wrap around the femur until the flexion angle
decreased to a point when wrapping stopped. It was found that the
Model Calculations nonwrapping started at 74 deg, 74.14 deg and 74.50 deg of knee

In a test situation a forcing function was applied to simulate f{ljlexmn for the 200 N, 400 N-and 600 N quadriceps forcing func-

knee extension exercise activity. This dynamic loading was ap-
plied to the patella through the quadriceps tendon causing the tibia
and patella to undergo 3-D motions while the femur was fixed in 25 -
a horizontal position. The forcing functions, shown in Fig. 4, were
specified according to Grood et al.’s experimental {iag4 where 20 1
the quadriceps force was measured during knee extension. Groo ‘
et al.[22] reported that this force had a constant average value of5 | C AN L . .
200 N in the range of 10 to 50 deg of knee flexion. This force ‘ R : ‘
reached 345 N at full extension, and was 75 N at 90 deg. In theyg - et w® ; o R
analysis, this forcing function will be referred to as the 200 N T : ‘

quadriceps force. Two other forcing functions with a similar pat- 5 - ~_g7 4 e e
tern were employed to simulate higher levels of quadriceps con- . ‘
tractions: 400 N and 600 N quadriceps forces. The 400 N and 600 ¢
N quadriceps forcing functions were specified such that they had a
value of 75 N at 90 deg that increased to 400 N and 600 N, -5

Angle (deg.)

' tibial rotation (int./ext.)
* varus/valgus

respectively, as the knee extended to 50 deg remained constar 0 15 30 45 60 75 90
until 10°, and increased to 530 N and 735 N, respectively, at full Knee Flexion Angle (deg.)
extension. '

In this simulation, the tibia and the patella were assumed {§ ¢ |nternal-external tibial rotations and varus-valgus rota-

begin their motions from rest. The initial position is depicted ifons versus knee flexion angle for different quadriceps forcing
Fig. 3a and was defined according to the experimental data avainctions

able in the literature datfl0,11,13 by specifying the following

Patellar Flexion Angle (deg.)

Force (N) 75 o F=200N.
800 1 1 1 ‘ o F=40N.
1 F =600 N, 1 60 - Co .
600 1 TE—E—E—= T U Co ‘ j
i . . ~ e o
\g\a 3 P =400 N 45 1
400 —H 5555 :
. . . 30 - ,,,,,
F=200N ‘ ‘
200 1 TSl S\ 151 A
‘ Extension ~ ‘ Extension
: - e
0 T T T T 0 T
0 15 30 45 60 75 90 0 15 30 45 60 75 920
Knee Flexion Angle (deg.) Knee Flexion Angle (deg.)
Fig. 4 Forcing functions applied to the quadriceps tendon to Fig. 7 Patellar flexion angle versus knee flexion angle for dif-
simulate knee extension exercise. ferent quadriceps forcing functions
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Tibio-Femoral Contact Force (N)

800
medial contact
lateral contact

600 & \- - ..o _

400 IO

200 _

Extehsion :
o ‘
0 15 30 45 60 75 90

Knee Flexion Angle (deg.)

Fig. 8 Medial and lateral components of the tibio-femoral con-
tact force versus knee flexion angle for different quadriceps

forcing functions

Force (N)

" anterior fibers

120

Knee Flexion Angle (deg.)

Fig. 11 Forces in the anterior and posterior fibers of the
PCL versus knee flexion angle for different quadriceps forcing
functions

TF contact moved posteriorly on the medial tibial plateau and

tions, respectively. The corresponding patellar flexion angles wekgteriorly on the lateral plateau, which reflects an internal rotation
57.63, 57.91 and 58.22 deg, respectively. FigupesBows the O©f the femur with respect to the tibi@n external rotation of the
predicted final position when the 200 N quadriceps forcing funéibia with respect to the femurAlso, and as expected, the loca-
tion was used. Figuresa3and 3 show that with knee extension, tion of the TF contact on the femur moved distally on the

the tibia rotated externallfthe “screw home mechanismiwhich

condyles. These figures also show that as the knee was extended,

provides verification for the dynamic simulation. Additionathe PF contact area moved proximally on the femur. It was also
model validation is obtained by studying the changes in the pr@und, as shown in Figs. 2 anch3that the PF contact moved
dicted positions of the TF and PF contact with extension. Figurééstally on the patella with knee extension. Fig. 5 shows that the
3a and 3 show that as the knee was extended, the location of tdration of the knee extension exercise decreases as the level of

0 Patello-Femoral Contact Force (N)

lateral contact

medial contact
600 | ©  FI=200N
o Fi=40N
A

FI=600N

0 15 30 45 60
Knee Flexion Angle (deg.)

Extension
[ —————

Fig. 9 Lateral and medial components of the patello-femoral
contact force versus knee flexion angle for different quadriceps

forcing functions

Force (N)

150

120 LN ‘ ‘

Knee Flexion Angle (deg.)
Fig. 10 Forces in the anterior and posterior fibe!

versus knee flexion angle for different quadriceps
tions
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posterio:r fibers
anterior fibers

rs of the ACL
forcing func-

the quadriceps forcing function increases, which also verifies the
dynamic analysis. Figure 6 shows that as the tibia was extended
from 90° to full extension, it underwent an average of 18.5 deg of
external rotation and 4 deg of valgus rotati@bduction. “Patel-

lar lagging,” which occurs with knee flexion, was also predicted
as shown in Fig. 7.

Figure 8 shows that the medial component of the TF contact
force was larger than the lateral component for all tested situa-
tions. This figure also shows that the medial component of the TF
contact force doubled during the last 30 deg of knee extension,
reaching a maximum at full extension. Figure 9 shows that the
lateral component of the PF contact force was much larger than its
medial component for all tested conditions. Both medial and lat-
eral components of the PF contact force had their largest values in
the range of 45 to 60 deg of knee flexion.

Figure 10 shows that as the knee was extended from the 90 deg
position to around 35 deg of flexion, the tension in the ACL was
greatest in its anterior fibers. As the flexion angle decreased, this
tension decreased while tension in the posterior fibers increased
and became dominant. Figure 11 shows that the anterior fibers of
the PCL carried large forces as the knee was in a flexed position.
These forces decreased as the knee was extended. The posterior
fibers of the PCL were in tension in the last 10 deg of knee
extension. At full extension, the forces in the posterior fibers were
greater than those in the anterior fibers, but much smaller than the
large forces that were found in the anterior fibers near 90 deg of
flexion.

Discussion and Conclusions

A review of the literature reveals that most of the published
anatomically based dynamic knee models are PtB3|. Abdel-
Rahman and Hefzy'$15] model is the only anatomical model
available in the literature that predicts the three-dimensional dy-
namic response of the joint under impact loads. Yet, this model
was limited in that it was only for the tibio-femoral joint, assumed
arigid contact formulation, and used a spherical representation for
the femoral articular surfaces. In this paper, a three-dimensional
anatomically based dynamic model of the knee that includes both
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tibio-femoral (TF) and patello-femoralPPF joints is presented. PFJR/F?
The model allows for deformable contact and for a piecewisl2 - ‘
. 8 . ——t+—— F7 = 400 N (present model)
mathematical representation of the femoral articular surfaces. T —_— ‘
. . =600 N (present model) . - 5
model also allows for wrapping of the quadriceps tendon arour 1 +----- : -
the femur that occurs at large flexion angles. ‘
The system of equations forming anatomically based dynargg - -
models is a system of Differential-Algebraic EquatioiixAE).
Several techniques have been proposed to solve the DAE SYSly.6
that describes the dynamic response of the kBgeMost of these

Tt X
—6— Gill and O*Connor

techniques were limited in that they could not solve the compl - —%— Van Ejden et al.

cated DAE system that represents the three-dimensional situati®4 ¢ B ‘ —+ - Ahmedet al.

In this paper, the_Dferential/Algebraic §stem Slver, DASSL ‘ ‘ 1 - -Buff et al.

(developed at Lawrence Livermore National Laboratonyas 0.2 i ‘ i i ; :
used to solve the complex DAE system to obtain the thre ¢ 15 30 45 60 75 90
dimensional response of the TF and PF joints under dynamic lo¢ Knee Flexion Angle (deg.)

ing. In order to use this solver, user-supplied subroutines were

deVelOped to evaluate the stiffness matrix of the SyStem. Clos%. 12 Ratio of total pate||0.fem0ra| contact force to quadri-
form analytical expressions were written in terms of the kinematieps force versus knee flexion angle: comparison between
parameters to determine the contributions of the ligamentous anddel predictions and published experimental data and other
patellar tendon forces, and the quadriceps force in the ndiHasi-static models’ predictions

wrapping situation to the stiffness matrix. On the other hand, the

contributions of the contact forces and the quadriceps force in the

wrapping situation to the stiffness matrix were determined Nt the ACL were most taut at 90 deg; the tension decreased as the

merically using backward differentiation formulas. = knee was extended. The forces in the anterior fibers of the PCL
The dynamic response of the knee joint is much different fro&

. - ere large at 90 deg of flexion, increased slightly with knee ex-
the static responsi@8]. Hence, it is hard to compare the prese nsion to a maximum around 75 deg, and then decreased progres-

model predictions with similar data reported elsewhere becaﬁ?eely until they vanished at 0 deg. On the contrary, the forces in
almost_ all of the data ava||ab|_e_|n the "ter?‘t“fe that (_:Iescr_lb_es L posterior fibers of the PCL were much smaller: they vanished
behavior of the human knee joint are static or quasi-static in & the range of 90 to 30 deg and then increased slightly to reach a
ture. In the following, and within these qualifications, model preyqyimum at 0 deg. These results are in agreement with those
dictions will be discussed and compared with those available {8,ieq in the literature to describe the function of the anterior
the literature. . ) and posterior fibers of both ACL and PC83—-36.

The tested condition was used to simulate the knee extension\yqqe| calculations also show that the total force in the ACL
exercise, a common rehabilitation reginf@]. The forcing func-  (anterior and posterior bundleseaches a maximum at full exten-
tions applied to the quadriceps tendon were specified accordingsign quring the knee extension exercise. At this position, the force
the experimental data available in the literature that quantify the pCL is comparatively small, which indicates that the ACL
quadriceps forces during a knee extension exef@ap _ carries a larger total force than the PCL at full extension during a

The classic “screw-home” pattern described by many investinee extension exercise. Also, and in the range of 75 to 90 deg of
gators 29] was observed from model predictions. As the knee Wagee flexion, the forces in the anterior fibers of the R@hich
extended from 90 deg of flexion to full extension, the tibia rotategre maximuny are greater than the forces in the anterior fibers of
externally an average of 18.5 deg. This predicted amount of e ACL (which are also maximum The posterior fibers of the
ternal rotations is consistent with the experimental values reportegh|_ and the posterior fibers of the ACL do not carry a load in the
in the literature(10 deg by Shoemaker et 429], 14.5 deg by range of 75 to 90 deg of flexion. These data thus indicate that the
Biden et al.[30], 20 deg by FitzPatrick31], and a range of 14 to tqta] force in the PCL is larger than the total force in the ACL in
36 deg by Wilson et al.32]). Model calculations also show thatthe range of 75 to 90 deg of flexion. These results are in agree-
as the knee was extended from 90 deg to about 55 deg of flexighent with Wilk et al.'s datd37] reporting that maximum poste-
it did not rotate either in valgus or in varus. As the flexion anglgor and anterior tibio-femoral shear forces occurred around 90
further decreased, the tibia went into valgabduction. The dy- and 0 deg of flexion, respectively. This is in agreement with our
namic simulation indicated that the tibia was ab-ducted an averaggdel calculations since posterior and anterior tibio-femoral shear
of 5 deg as the knee was extended from 55 deg of flexion to fyllrces are resisted by the PCL and ACL, respectively. Also, our
extension. These results are consistent with those reported by Wilodel calculations have shown that the maximum forces carried
son et al.[32] where the authors used two testing conditiongy the ACL at full extension are larger than the maximum forces
(fixed tibia and fixed femyrand 13 knees to describe the kneearried by the PCL near 90 deg of flexion. These findings are
movements that are coupled with passive knee flexiopo consistent with other investigators’ data reporting that the greatest
internal-external torques, no varus-valgus torques, no anterigfount of tibial displacement occurs within the last 30 deg of
posterior loads They reported that as the knee was extended arflee extension during knee extension exerf2&37-39.
flexed from a 50 deg of flexion position, it was ab-ducted and |t was also found that the medial component of the tibio-
ad-ducted on average 5 deg and 1 deg, respectively. They aismoral contact force was always larger than the lateral compo-
reported that when the femur was fixéimilar to our numerical nent. It is hard to compare these results with those available in the
simulation), the knee was neither abducted nor adducted as it Witerature since, and to the best of our knowledge, no data has been
flexed from 50 deg to 90 deg of flexion, and was abducted 5 degported to compare the medial and lateral components of the
as it was extended from 50 to 0 deg of flexion, which is consistetibio-femoral contact force during knee extension exercise. Nev-
with our model predictions. ertheless, it has been reported that the medial condyle carries

Model calculations have also shown that the anterior and pasore load than the lateral condyle during a closed chain exercise
terior fibers of both anterior cruciate ligame#®CL) and poste- [40-42.
rior cruciate ligamentPCL) had opposite force patterns. The pos- Model calculations also show that the ratio of the total patello-
terior fibers of the ACL were slack in the range of 90 to 60 deg démoral (PP contact force to the quadriceps force decreased from
flexion, and tightened progressively as the knee was extendadarly 1.1 at 80 deg to 0.45 near full extension as shown in Fig.
reaching a maximum at O deg of knee flexion. The anterior fibet. This is in agreement with other model predictions and with
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published data from in vitro studies. Figure 12 shows a compathe quadriceps tendon around the femoral surface and to model
son between the present model predictions and those of e deformable contact at the articular surfaces. As a result, it is
Eijden et al.'s[43] and Gill and O’Connor’$44] models, and the possible to introduce more ligaments, to split each ligament into
experimental data of Ahmed et §5] and Buff et al[46]. Figure several fiber bundles, to model the wrapping of the quadriceps
12 shows that the present model predictions are more in agregeund the femur that occurs at large flexion angles, and to allow
ment with Ahmed et al.'§45] in vitro study than that of Buff for more or fewer surface patches, as appropriate, to come into
et al.[46]. contact. This formulation allowed the solution of this intricate 3-D
Model calculations also show that the component of the Fgynamic model.
contact force on the lateral side is always greater than the compodhe present 3-D model can be used to analyze knee response to
nent on the medial side. These results are in agreement with thg¥gamically applied load, which has particular application to in-
obtained from the 3-D static models developed by Hefzy arilry mechanics. Since most injuries to the knee involve dynamic
Yang[11] and Hirokawd 14] who has also reported larger contactoads, this model, which accounts for the inertial effects of those
forces on the lateral side. Also, our model calculations are fiynamic forces, will provide a valuable tool to study the underly-
agreement with the experimental data available in the literatufgd mechanisms for these injuries. In this model, the menisci were
describing patello-femoral contact. The present results indicdtet included and the definition of the tibial articular surfaces was
that the contact area on the lateral patellar facet is larger than tAgt considered. No distinction was made between the medial and
on the medial facet at all flexion anglésis is because contact lateral tibial articular surfaces. However, further developments of
forces are based on contact areas in the present jndthés is in  incorporating the menisci, differentiating between the medial and
agreement with Hille et al[47], Hefzy et al.[48], and Hehne lateral articular surface geometry, particularly in terms of posterior
et al. [49] who have reported larger contact areas on the lategPPe and medio-lateral inclination, and modeling muscular co-
side. Model calculations have also shown that with knee extefRntractions will allow the model to be used to study daily living
sion, the location of the PF contact moves proximally on the f@ctivities where dynamic axial compressive forces act on the joint
mur and distally on the patella. These results are in agreem@gtin walking and running.
with those reported in the literature describing the locations of the
PF contact aregddefzy and Yand 11], Hefzy et al.[48]). Acknowledgments
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