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Abstract This work deals with the effects of Casimir and/or van der Waals forces
(quantum dynamics phenomena) on the amplitude-frequency response of the super-
harmonic resonance of second-order of axisymmetric vibrations of electrostatically
actuated nanoelectromechanical systems (NEMS) clamped circular plates. Electro-
static actuation consists of alternating current (AC) voltage of magnitude to produce
hard excitations and of frequency near one fourth the natural frequency of the clamped
circular plate. The intermolecular forces Casimir and van der Waals, damping force,
and electrostatic force are the forces acting on the NEMS plate. Six Reduced Order
Models (ROMs) with one and up to 6 modes of vibration are used. The ROM with
one mode of vibration is solved using the Method of Multiple Scales (MMS) in
which the hard excitations are modeled using first-order and second-order models
of hard excitations electrostatic force. Also, Taylor polynomials up to 25th degree
are used to approximate the electrostatic, Casimir and van der Waals forces in the
ROM with one mode of vibration. MMS predicts the amplitude-frequency response
(bifurcation diagram) of the resonance. The other ROMs, using from two to six
modes of vibration are solved using two methods, namely continuation and bifurca-
tion using AUTO software package to predict the amplitude-frequency response, and
numerical integration using Matlab to predict time responses of the NEMS plate.
The amplitude-frequency response predicts a softening effect, and the existence of
three branches, two stable and one unstable. A saddle-node bifurcation point of am-
plitude of 0.24 of the gap, and end points of amplitudes of 0.66 and 0.75 of the gap
of unstable and stable branches, respectively, are predicted. The increase of Casimir
and/or van der Waals forces shifts the branches, bifurcation points, and endpoints to
lower frequencies.
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4.1 Introduction

Micro- and Nano-electromechanical systems (M/NEMS) are known for their small
size, and variety of forms. By taking advantage of their size, these devices can be used
in several applications, while maintaining high efficiency and performance (Ashoori
et al, 2017). Their variety of shapes such as circular plates (Sajadi et al, 2018;
Caruntu and Oyervides, 2017, 2016; Liao et al, 2009), beams (Caruntu et al, 2019,
2013; Zhang et al, 2015), membranes (Dorfmeister et al, 2018), carbon nanotubes
(Caruntu and Juarez, 2019; Caruntu and Luo, 2014; Khadem et al, 2012), provide
options that allow one to decide which benefits a specific application the most. These
applications include, but are not limited to, micropumps (Wang and Fu, 2018; Nisar
et al, 2008), ultrasonic transducers (Ahmad and Pratap, 2010), energy harvesters
(Zhang et al, 2015), and shock switches (Khadem et al, 2012). Furthermore, these
systems are able to perform with a huge assortment of actuation methods, such as
thermal actuation (Varona et al, 2007), piezoelectric (Wang and Fu, 2018; Nisar
et al, 2008; Maurini et al, 2006), and electrostatic (Caruntu and Juarez, 2019; Nisar
et al, 2008). Electrostatic actuation in M/NEMS plates involves the use of parallel
plates, one of which is fixed and the other flexible. By applying a voltage between
the plates, an electrostatic force is induced between the plates, which leads to a
deformation of the flexible plate. By applying an alternating current (AC) voltage,
the flexible plate vibrates. However, these devices might also have a direct current
(DC) voltage component, which induces a static deflection onto the flexible plate
(Liao et al, 2009).

The frequency and amplitude of the AC voltage has a direct effect on the behavior
of the system. As these systems are non-linear, changing the voltage can have an
effect on the stability of the system. As shown by Sajadi et al (2018), different
parameters such as differential pressure can lead to unexpected behavior, i.e increased
stability with increasing voltage. Other parameters such as intermolecular forces
Casimir and van der Waals should be taken into consideration when designing
NEMS. Intermolecular forces are significant at nano scales, reaching the point of the
intermolecular forces overcoming the natural resistance of the structure (Batra et al,
2008). It should be said that Casimir and van der Waals forces cannot occur at the
same time. They describe the same phenomenon at different scales. For gaps greater
than 100 nm, Casimir force describes the intermolecular interaction, and for gaps
less than 50 nm, van der Waals force (Caruntu and Reyes, 2020; Caruntu et al, 2016;
Batra et al, 2008). If one reaches a critical voltage, or a combination of factors in the
system, pull-in can occur. Pull-in is a phenomenon in which the flexible plate gets
in contact with the ground plate (Caruntu and Reyes, 2020; Liao et al, 2009). This
occurs when the attracting forces overcome the natural resistance of the structure.
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M/NEMS circular plates are also affected by damping (Ishfaque and Kim, 2017;
Shabani et al, 2013) or surface effects (Lin et al, 2018). Damping depends on the
environment in which the M/NEMS are being used. Shabani et al (2013) mentioned
that if the fluid is a liquid, the model should take into consideration the damping
effect, as well as added mass. This has a great effect on the behavior of the system,
due to the energy loss. Designs such as perforated circular plates (Ishfaque and Kim,
2017) were also taken into consideration in order to control the level of damping the
system is influenced by. Surface effects including surface stress and elasticity affect
the pull-in voltage. Surface effects are significant if the circular plates are quite thin
or have a large surface to volume ratio (Lin et al, 2018). A variety of models have
been reported in the literature. Such models include the Kirchoff thin plate theory
(Anjomshoa and Tahani, 2016; Rahim, 2010a), or the Mindlin plate theory (Rahim,
2010a). The Mindlin plate theory takes into consideration the shear strain, while the
Kirchhoff does not.

Secondary resonances that occur at fractions of the natural frequency and un-
der hard excitations, i.e. superharmonic resonance, constitute a very important
topic. Many studies have been conducted on M/NEMS under secondary resonances
(Caruntu et al, 2021, 2019; Kacem et al, 2012; Najar et al, 2010; Nayfeh and Younis,
2005). Better understanding of the behavior of the system, would help to better de-
sign and optimize it. Superharmonic resonances occur at a frequency less than that
of the natural frequency, causing larger than normal amplitudes to occur due to hard
excitations. As shown by Kacem et al (2012); Najar et al (2010); Nayfeh and Younis
(2005), the behavior of a system varies, and depending on the situation, softening
and hardening behavior can occur. Furthermore, Najar et al (2010) showed that even
superharmonic resonances behave differently.

This paper investigates the amplitude-frequency response of superharmonic reso-
nance of second-order of electrostatically actuated M/NEMS clamped circular plate
resonators. Only AC voltage is considered in this work. This investigation has been
conducted using Reduced Order Models (ROMS) with a number of modes of vi-
bration (Caruntu et al, 2013) from one to six. These models have been solved using
the Method of Multiple Scales (MMS), continuation and bifurcation using AUTO,
and numerical integration using Matlab (fsolve and ode15s). The effects of various
parameters, such as voltage, damping, Casimir and van der Waals effects are re-
ported. The effect of higher degree Taylor polynomials approximating electrostatic,
Casimir, and van der Waals forces in the ROM with one mode of vibration on the
amplitude-frequency response is also reported. The effects of parameters voltage and
damping on the amplitude-frequency response are reported as well. ROMs are also
numerically integrated to predict time responses. While similar methods have been
used for circular plates (Caruntu and Oyervides, 2017, 2016), this is the first time a
second-order model for hard excitations is used, and an investigation regarding the
effect of the degree of Taylor polynomials approximating the electrostatic, Casimir
and van der Waals forces on the amplitude-frequency response are conducted. In
comparison to data reported in the literature, the behavior of the clamped circular
plate is similar to Kim and Lee (2015); Najar et al (2010) who investigated other
structures than circular plates. For example, (Kim and Lee, 2015) used a model in-
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cluding only AC which causes the super harmonic resonance of order two to appear
in carbon nanotubes. They reported a more linear behavior. This is different from the
predictions of present work for clamped circular plates in which the branches split at
higher amplitudes showing a strong nonlinear behavior. Similar behavior with (Kim
and Lee, 2015) is shown for clamped circular plates. Najar et al (2010) focused on
cantilevers. In their case the branches split as in present work. However their results
show a hardening effect, not a softening effect as in present work.

The novelty of this paper consists of:

1. Reporting the amplitude-frequency response of superharmonic resonance of
M/NEMS clamped circular plates,

2. in order to include quantum dynamics effects such as Casimir and van der Waals
forces.

3. The amplitude-frequency response (bifurcation diagram) predicts the existence
of a saddle-node bifurcation at an amplitude around 0.25 of the gap and three
branches, two stable and one unstable.

4. The two branches in higher amplitudes are shown to have endpoints around 0.7
of the gap, which leads to a narrow interval for which pull-in occurs.

5. Six ROMs are used in this investigation using from one to six modes of vibration
(terms).

6. The ROM using one term (1T ROM) is solved using MMS,
7. in which two models of hard excitations are proposed,
8. and an investigation regarding the degree of Taylor polynomials approximating

the electrostatic, Casimir and van der Waals forces is conducted.
9. The other ROMs using from two to six terms are solved using a continuation

and bifurcation software package AUTO, and are numerically integrated using
Matlab.

10. It is shown that ROM with 6 modes of vibration (6T ROM) is the one with the
best prediction for all amplitudes in the bifurcation diagram.

11. This work predicts that both Casimir and van der Waals forces in NEMS shift
the steady-state amplitudes in the bifurcation diagram to lower frequencies and
increase the softening effect.

12. It also predicts that hard excitations with dimensionless voltage parameter δ > 3
and dimensionless damping parameter b ≤ 0.025 lead to superharmonic reso-
nance of second-order. Several papers used MMS or the ROM with more than
one mode of vibration to simulate the behavior of these systems, whether they
were cantilevers (Caruntu et al, 2021, 2019, 2013; Liu et al, 2014; Kahrobaiyan
et al, 2011; Najar et al, 2010), carbon nanotubes (Caruntu and Juarez, 2019;
Caruntu and Luo, 2014; Kim and Lee, 2015), or plates (Caruntu and Oyervides,
2017, 2016; Sharafkhani et al, 2012; Batra et al, 2008). Most of the literature,
except for (Kim and Lee, 2015; Liu et al, 2014), model electrostatic actuation
with both DC and AC. Yet, these exceptions do not consider an MMS model for
hard excitation for circular plates.
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4.2 Differential Equation of Motion

Figure 4.1 shows an M/NEMS circular plate, which is parallel to a ground plate at
a gap distance d. The radius and thickness of the plate are R and h, respectively.
Between the M/NEMS circular plate and the ground plate there is an AC voltage of
amplitudeV0 of frequency Ω̂. The AC voltage produces an electrostatic force between
the circular plate and the ground plate, which leads to the circular plate into vibrations
with the dimensional deflections û(r̂, t̂), where r̂, t̂ are the dimensional current
radius and dimensional time, respectively. This work considers only axisymmetrical
vibrations. The partial differential equation of motion describing the clamped circular
plate (Caruntu and Oyervides, 2017, 2016), Fig. 4.1, is based on Kirchoff plate theory
(classical plate theory) valid for thin plates (Rahim, 2010b; Lee et al, 1998; Baecker
et al, 2015), i.e. thickness to diameter radius ratio less than 0.05 (Zietlow et al, 2012),
and it includes Casimir and van der Waals forces:

Fig. 4.1 Circular plate suspended above ground plate
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∂2û(t̂, r̂)

∂ t̂2
+ 2c1
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∂4û(t̂, r̂)

∂r̂4
+

2

r̂
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2[d− û(t̂, r̂)]2
+

H
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(4.1)

where ρ is plate density, c1 damping coefficient, D flexural rigidity, �∗ electrical
permitivity, V0 magnitude of AC voltage, H Hamaker constant, h̄ reduced Plank
constant, and c the speed of light in vacuum. The following dimensionless variable
are introduced: dimensionless radial coordinate r, dimensionless deflection u and
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dimensionless time t. They are written in terms of the dimensional variables r̂, û
and t̂ (Caruntu and Oyervides, 2017, 2016) are as follows:

r =
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R
, u =

û

d
, t = t̂

�
D

ρhR4
. (4.2)

The dimensionless partial-differential equation of motion to include both intermolec-
ular forces, Casimir and van der Waals, is given by
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(4.3)
where µ and α cannot be different than zero at the same time since Casimir and van
der Waals forces describe the same phenomenon but at different scales. Operator
P [u] is given by
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The dimensionless parameters are as follows: Ω is the dimensionless AC frequency,
b is dimensionless damping parameter, α is the dimensionless Casimir parameter, µ
is the dimensionless van der Waals parameter, δ the dimensionless voltage parameter
and ωi are the dimensionless natural frequencies of clamped circular plates. These
dimensionless parameters are as follows:
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(4.5)

where E is the Young’s modulus, ν is Poisson’s ratio. Furthermore, ω̂i are the
dimensional natural frequencies. The first six dimensionless natural frequencies of
clamped circular plate are given in Table 4.1. The values of the constants of the

Table 4.1 First six natural frequencies

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

ωi 10.2158 39.7711 89.1041 158.1842 247.0064 355.5693

system are given below in Table 4.2, and the dimensional system parameters are
given in Tables 4.3, 4.4, and 4.5 for 3 cases, namely electrostatic, α = µ = 0, in
Eq. (4.3), Casimir, µ = 0; and van der Waals, α = 0, respectively. The material
properties are of polysilicon (Ouakad, 2017; Lee et al, 1998; Sharpe et al, 1997)
and are in Table 4.2. The plate dimensions in Tables 4.3-4.5 satisfy criteria for thin
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plates from the classical plate theory (Zietlow et al, 2012). Tables 4.2-4.5 result in
the dimensionless system parameters shown in Table 4.6. The dimensionless mode

Table 4.2 Constants

Young’s modulus E 169 GPa
Poisson’s ratio ν 0.22
Permitivity of free space �∗ 8.854× 10−12 C2/N/m2

Density of material ρ 2330.0 kg/m3

Planck’s constant / 2π h̄ 1.0546× 10−34 m2 kg/s
Speed of light in vacuum C 299 972 km/s
Hamaker constant H 4.4× 10−19 J

Table 4.3 Dimensional parameters,
electrostatic case MEMS

Initial gap distance d 1.014 µm
Plate thickness h 3.01 µm
Radius of plate R 250 µm
Damping c1 10.64 N s/m3

Voltage V0 9.865 V

Table 4.4 Dimensional parameters,
Casimir case NEMS

Initial gap distance d 0.15 µm
Plate thickness h 0.4 µm
Radius of plate R 57.675 µm
Damping c1 3.5307 N s/m3

Voltage V0 0.5109 V

Table 4.5 Dimensional parameters,
van der Waals case NEMS

Initial gap distance d 0.05 µm

Plate Thickness h 0.0301 µm

Radius of Plate R 2.1561 µm

Damping c1 14.305 N s/m3

Voltage V0 1.4522 V

Table 4.6 Dimensionless system parameters

Voltage Parameter δ 4.0
Damping Parameter b∗ 0.025
Casimir Parameter α 0.2
van der Waals parameter µ 0.2

shapes φi of the clamped circular plates are given in terms of J0 and I0 which are
Bessel functions of first kind and modified first kind, respectively, as follows:

φi(r) =
J0(

√
ωi · r)

J0(
√
ωi)

− I0(
√
ωi · r)

I0(
√
ωi)

(4.6)

The dimensionless mode shapes form an orthonormal set. The relationship between
the mode shapes φ1 and the natural frequency (Rao, 2007) is given by
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4.3 Superharmonic Resonance of Second-Order

The dimensionless frequency Ω of the AC voltage, that produces electrostatic force,
is considered to be nearly one fourth of the natural frequency

Ω =
ω1

4
+ �σ (4.8)

where σ is the detuning parameter, and � a bookkeeping parameter used in MMS.
The bookkeeping parameter � is assumed to be small such that it indicates a small
detuning parameter in Eq. (4.8), and indicates the small terms in the equations of
motion of Sections 4.4 and 4.6. The dimensionless voltage V , Eq. (4.3), is given by

V =
√
δ cosΩt (4.9)

As the electrostatic force is proportional to the square of the voltage, the frequency
of the electrostatic force is twice the AC frequency. This leads to superharmonic
resonance of the second-order. The square of the dimensionless voltage is as follows:

V 2 = δ cos2 Ωt = δ
1 + cos2Ωt

2
= δ

�1
2
+

e2iΩt + e−2iΩt

4

�
(4.10)

4.4 Method of Multiple Scales: First-Order Hard Excitations
Model

All forces at the right-hand side of Eq. (4.3), are approximated by Taylor polynomials.
In the first-order hard excitations model, the first term of the Taylor polynomial of the
electrostatic force on the right-hand side of the equation is being treated as significant
so it does not have the bookkeeping parameter � as coefficient. All other terms of
the Taylor polynomial of the electrostatic force, the Taylor polynomials of Casimir
and/or van der Waals forces, as well as the damping force, are considered small, so
all these terms have the bookkeeping parameter � as coefficient as follows:

∂2u

∂t2
+ �b

∂u

∂t
+ P [u] = δ

1 + cos 2Ωt

2
+ �δ(2u+ 3u2 + 4u3)

1 + cos 2Ωt

2

+ �µ(1 + 3u+ 6u2 + 10u3) + �α(1 + 4u+ 10u2 + 20u3) ,
(4.11)

where P [u] is given by Eq. (4.4). The first-order hard excitations model is also called
one term no epsilon (1TnE) model in this work. The solution of Eq. (4.11) uses the
first mode of vibration that is given by
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u(t.r) = u1(t)φ1(r) , (4.12)

where u1(t) is a function of time to be determined and φ1(r) is the first modeshape
of the clamped circular plate. Assume a uniform expansion (Caruntu et al, 2021) of
u1(t) as follows:

u1(t) = u10(t) + �u11(t) . (4.13)

Two time scales are considered, a fast time scale T0 = t and a slow time scale
T1 = ε · t. The partial derivatives with respect to the time scales are given by
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(4.14)

and the time derivatives become
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Substituting Eqs. (4.12)-(4.15) into Eq. (4.11), using Galerkin method by multiplying
the resulting equation by rφ1 and integrating from 0 to 1, introducing the following
notations
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and then collecting the terms having the same power of �, a zero-order problem and
a first-order problem result as follows:

�0 : D2
0u10 + u10ω

2
1 = g1δ

�
1

2
+

e2iΩT0 + e−2iΩT0

4

�
(4.17)

�1 : D2
0u11 + u11ω

2
1 = −2D0D1u10 − bD0u10 + δ(2u10 + 3u2

10g3

+ 4u3
10g4)

�
1

2
+

e2iΩT0 + e−2iΩT0

4

�
+ µ(g1 + 3u10 + 6u2

10g3 + 10u3
10g4)

+ α(g1 + 4u10 + 10u2
10g3 + 20u3

10g4)
(4.18)

It should be noted that g2 = 1. The zero-order problem Eq. (4.17) has the following
solution

u10 = Aeiω1T0 + Āe−iω1T0 + Λe2iΩT0 + Λe−2iΩT0 +K , (4.19)

where Λ and K are given by

Λ =
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2ω2
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After substituting Eq. (4.19) into Eq. (4.18), the secular terms are collected and their
sum is set to zero. The complex amplitude A and its conjugate Ā, written in terms
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of the real phase β1 and real amplitude a1 are as follows:
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Substituting Eq. (4.21) into the secular terms equation, dividing the resulting equation
by eiβ1 , and separating the real and imaginary parts, the following amplitude-phase
differential equations result
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where � is the derivative with respect to the slow scale T1, and γ is given by

γ = 4σT1 − β1 . (4.24)

In order to find the steady-state amplitudes, the derivatives of the amplitude a1
and phase γ are set to zero (a�1 = γ� = 0). The resulting equations predicting the
amplitude-frequency response are

σ =
−1

4a1ω1
(A1a

3
1 +B1a

2
1 + C1a1 +D1) , (4.25)

where
A1 =

3

4
g4(δ + 5µ+ 10α)

B1 =
9

4
δg4Λcosγ

C1 =
δ

2
+

3

2
µ+ 2α+ g3

�3
2
δ(Λ+K) + 2K(3µ+ 5α)

�

+ g4
�
3δ(K2 + 2Λ2 + 2KΛ) + 15(µ+ 2α)(K2 + 2Λ2)

�

D1 = Λcosγ

�
1

2
δ + g3

�3
2
δ(Λ+K) + 2Λ(3µ+ 5α)

�

+ g4
�
δ(3K2 + 4Λ2 + 6KΛ) + 30KΛ(µ+ 2α)

��

(4.26)



4 Quantum Effects on NEMS Superharmonic Resonance 79

and

a1 =
−B2 ±

�
B2

2 − 4A2C2

2A2
, (4.27)

where
A2 =

3δg4Λ

4ω1
sinγ

B2 =
−b

2

C2 =
Λsinγ

ω1

�
1

2
δ + g3

�3
2
δ(Λ+K) + 2Λ(3µ+ 5α)

�

+ g4
�
δ(3K2 + 4Λ2 + 6KΛ) + 30ΛK(µ+ 2α)

��
.

(4.28)

4.5 Stability Testing

In order to test the stability of the steady-state solutions of the system of equations
(4.22 , 4.23) of the 1TnE electrostatic MMS model, the Jacobian
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is needed. The eigenvalues of the Jacobian are given by
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4.6 Method of Multiple Scales: Second-Order Hard Excitations
Model

In the second-order hard excitations model, the first two terms of the Taylor poly-
nomial of the electrostatic force are considered significant, so they do not have the
bookkeeping parameter � as coefficient

∂2u

∂t2
+ �b

∂u

∂t
+ P [u] = δ

1 + cos 2Ωt

2

+ 2δu
1 + � cos 2Ωt

2
+ �δ(3u2 + 4u3)

1 + cos 2Ωt

2

+ �µ(1 + 3u+ 6u2 + 10u3) + �α(1 + 4u+ 10u2 + 20u3)

(4.32)

The second-order hard excitations model is also called two-term no epsilon (2TnE)
model in this work, This model allows for a better approximation of the solution.
Using Eqs. (4.12-4.16) and Eq. (4.7), the resulting zero-order and the first-order
problems are as follows:

�0 : D2
0u10 + u10ω̄

2
1 = g1δ

�
1

2
+

e2iΩT0 + e−2iΩT0

4

�
,

(4.33)

�1 : D2
0u11 + u11ω̄

2
1 = −2D0D1u10 − bD0u10 + δu10

e2iΩT0 + e−2iΩT0

2

+ δ(3u2
10g3 + 4u3

10g4)

�
1

2
+

e2iΩT0 + e−2iΩT0

4

�

+ µ(g1 + 3u10 + 6u2
10g3 + 10u3

10g4) + α(g1 + 4u10 + 10u2
10g3 + 20u3

10g4) ,
(4.34)

where ω̄2
1 is given by

ω̄2
1 = ω2

1 − δ . (4.35)

The solution of the zero-order problem is as follows:

u10 = Aeiω̄1T0 + Āe−iω̄1T0 + Λe2iΩT0 + Λe−2iΩT0 +K , (4.36)

where Λ and K are defined as

Λ =
δ

4

g1
(ω̄2

1 − 4Ω2)
, K =

δg1
2ω̄2

1

. (4.37)

Equation (4.36) is then substituted into the first-order problem Eq. (4.34), and the
resulting equation is then expanded. This allows the secular terms for this resonance
case to be gathered and their sum set equal to zero. The complex amplitudes Eq.
(4.21), are substituted into the resulting equation, which is then divided by eiβ1 . Eq.
(4.24) is used in the resulting equation and its real and imaginary parts are separated
resulting into the following amplitude-phase differential equations
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a�1 = − b

2
a1 +

Λ sin γ

2ω̄1

�
δ + g3

�
3δ(Λ+K) + 4Λ(3µ+ 5α)

�

+ g4
�
δ(12KΛ+ 8Λ2 + 6K2 +

3

2
a21) + 60KΛ(µ+ 2α)

��
,

(4.38)

γ� = 4σ +
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2ω̄1

�
3µ+ 4α
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+

δ

2a1ω̄1
Λcosγ
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1

a1ω̄1
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�3
2
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4
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��
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(4.39)

After setting the derivatives equal to zero, one can solve for the steady-state solutions,
a�1 = γ� = 0. The equations predicting the amplitude-frequency response are

σ =
−1

4a1ω̄1
(A1a

3
1 +B1a

2
1 + C1a1 +D1) , (4.40)

where
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4
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(4.41)

and

a1 =
−B2 ±

�
B2

2 − 4A2C2

2A2
, (4.42)

where
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A2 =
3δg4Λ

4ω̄1
sin γ ,

B2 =
−b

2
,

C2 =
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ω̄1
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1

2
δ + g3
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(4.43)

4.7 Electrostatic Reduced Order Model

This electrostatic ROM is valid for MEMS circular plates with the gap distance
greater than one micron, d > 10−6m. ROM, if enough number of modes of vibra-
tion included, gives accurate results for both weak and strong nonlinearities. The
electrostatic ROM includes only the electrostatic force, so no Casimir or van der
Waals forces are present, see Eq. (4.3). Therefore the differential equation of motion
Eq. (4.3), has the Casimir and van der Waals parameters α and µ set to zero. This
equation is then multiplied by (1 − u)2 in order to have no denominator in the
differential equation. So Eq. (4.3) becomes

ü(1− 2u+ u2) + u̇b(1− 2u+ u2) + (1− 2u+ u2)P [u] = δ cos2 Ωt , (4.44)

where P [u] is given by Eq. (4.4). The solution u, which describes the deflection of
the plate, is written in terms of the first N dimensionless modeshapes of the circular
plate as follows:

u(r, t) =
N�

i=1

ui(t)φi(r) , (4.45)

where φi(r) are the dimensionless modeshapes and ui(t) are time functions to be
determined. Substituting Eqs. (4.45) and (4.7) into Eq. (4.44), it results

N�

i=1

üi

�
φi − 2

N�

j=1

ujφiφj +
N�

j,k=1

ujukφiφjφk

�

+ b

N�

i=1

u̇i

�
φi − 2

N�

j=1

ujφiφj +

N�

j,k=1

ujukφiφjφk

�

+
N�

i=1

uiω
2
i

�
φi − 2

N�

j=1

ujφiφj +
N�

j,k=1

ujukφiφjφk

�
= δ cos2 Ωt ,

(4.46)

where N is the number of modes of vibration used in the ROM. Using Galerkin
procedure, Eq. (4.46) is multiplied by r and φn and then integrated from 0 to 1, i.e.
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Eq. (4.46) is transformed by the following operator
� 1

0

•rφn(r)dr . (4.47)

One should mention that n = 1,2,...,N, so a system of N second-order differential
equation is obtained, where the h-coefficients are given by Eq. (4.48). Since this work
includes three ROMs, i.e. electrostatic ROM which includes only the electrostatic
force but no Casimir and van der Waals, Casimir ROM which includes the electro-
static and Casimir forces, and van der Waals ROM which includes electrostatic and
van der Waals forces, h-coefficents are given by Eq. (4.48) for all three cases. The
electrostatic ROM only uses the first four, hn, hni, hnij ,and hnijk, the van der Waals
ROM uses hn, hni, hnij , hnijk, and hnijkl, and the Casimir model uses hn, hni,
hnij , hnijk, hnijkl, and hnijklm,

hn =

� 1

0

rφndr , hni =

� 1

0

rφnφidr , hnij =

� 1

0

rφnφiφjdr ,

hnijk =

� 1

0

rφnφiφjφkdr , hnijkl =

� 1

0

rφnφiφjφkφldr ,

hnijklm =

� 1

0

rφnφiφjφkφlφmdr .

(4.48)

New variables yk are introduced as follows:

y2k−1 = uk, y2k = u̇k, ẏ2k = ük, k = 1, 2 . . . N (4.49)

With these new variables the system of N second-order differential equations is
transformed into a system of 2N first-order differential equations given by





ẏ2n−1 = y2n
N�

i=1

ẏ2iAni = −b
N�

i=1

y2iAni −
N�

i=1

ω2
i · y2i−1Ani + δhn cos

2 Ωt
(4.50)

where n = 1, 2, . . . , N and Ani are as follows

Ani = hni − 2
N�

j=1

hnij · y2j−1 +
N�

j,k=1

hnijk · y2j−1 · y2k−1 . (4.51)

In order to predict the amplitude-frequency response (bifurcation diagram) of the
superharmonic resonance of second-order of the MEMS circular plate, the contin-
uation and bifurcation method (AUTO 07p software package) is used to solve Eqs.
(4.50). Also, same Eqs. (4.50) are numerically integrated using Matlab in order to
predict time responses of the MEMS circular plate.
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4.8 Casimir Reduced Order Model

Casimir ROM is valid for NEMS circular plates with the gap distance d less than
one micron and greater than 100 nanometers, 100 × 10−9m < d < 10−6m. The
governing equation of the Casimir ROM is given by

ü(1− 4u+ 6u2 − 4u3 + u4) + u̇b(1− 4u+ 6u2 − 4u3 + u4)

+ (1− 4u+ 6u2 − 4u3 + u4)P [u] = (1− 2u+ u2)δ cos2 Ωt+ α ,
(4.52)

where Eq. (4.3) was multiplied by (1− u)4. The van der Waals parameter was set to
zero. P [u] is given by Eq.(4.4). Substituting Eq. (4.45) and Eq. (4.7) into Eq.(4.52),
it results
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(4.53)

. . .− 4
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�

= δ

�
1− 2

N�

i=1
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N�

i,j=1

uiujφiφj

�
cos2 Ωt+ α

where N is the number of modes of vibration in the ROM. Multiplying Eq. (4.53)
by Eq. (4.47) and using Eqs. (4.48) and (4.49) it results
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+ δ
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(4.54)
where n = 1, 2, . . . , N and Bni are as follows:

Bni =hni − 4

N�

j=1

hnij · y2j−1 + 6

N�

j,k=1

hnijk · y2j−1 · y2k−1

− 4
N�
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(4.55)

The amplitude-frequency response of the superharmonic resonance of second-order
is predicted using continuation and bifurcation (AUTO 07p software package) to
solve Eqs. (4.54). Also, time responses are predicted through numerical integration
of Eqs. (4.54) using Matlab.

4.9 Van der Waals Reduced Order Model

Van der Waals ROM is valid for NEMS circular plates with the gap distance d less
than 50 nanometers, d < 50× 10−9m. The ROM takes into consideration the effect
of van der Waals forces. Hence in Eq. (4.3) the Casimir parameter α is set to zero.
Multiplying both sides by (1 − u)3 as it is the largest denominator, and expanding,
it results

ü(1− 3u+ 3u2 − u3) + u̇b(1− 3u+ 3u2 − u3) + (1− 3u+ 3u2 − u3)P [u]

= δ(1− u) cos2 Ωt+ µ .
(4.56)

Substituting Eq.(4.45) and Eq.(4.7) into Eq.(4.56), it results
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(4.57)
where N is the number of modes of vibration in the ROM. Multiplying (4.57) by
Eq. (4.47), and using (4.48) and (4.49), it results
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(4.58)

where n = 1,2,...,N and Cni are given by

Cni = hni − 3
N�

j=1

hnij · y2j−1 + 3
N�

j,k=1

hnijk · y2j−1 · y2k−1

−
N�

j,k,l=1

hnijkl · y2j−1 · y2k−1 · y2l−1 .

(4.59)

The system of 2N first-order differential equations is solved numerically using
AUTO 07p for predicting the bifurcation diagram, and numerically integrated using
Matlab’s built-in solver ode15s for time responses.
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4.10 Numerical Simulations

4.10.1 Electrostatic Model of Microelectromechanical Systems
Clamped Circular Plates

Figure 4.2 shows the amplitude-frequency response in the case of MEMS, i.e. the
gap distance, d > 10−6m. The horizontal axis represents the detuning frequency σ,
where at σ = 0, the AC frequency is exactly one fourth of the first dimensionless
natural frequency of the MEMS clamped circular plate. The vertical axis represents
the dimensionless amplitude at the center of the plate Umax. The stable branches
are denoted by solid lines, and the unstable branches by dashed lines. Figure 4.2
shows the predictions of three methods, 1) one term ROM of second-order model
of hard excitations (2TnE), and 25th degree Taylor polynomial to approximate the
electrostatic force, that was solved using MMS in order to predict the amplitude-
frequency response, 2) a six term (6T) ROM numerically integrated using Matlab that
predicted time responses, and 3) six term (6T) ROM solved using the continuation
and bifurcation method (AUTO) that predicted the amplitude-frequency response.
These methods predict the existence of saddle-node bifurcation point A. As the
frequency is swept up, the 6T ROM AUTO predicts that the steady state amplitude
increases along branch 1 until the system reaches pointA, where it experiences a jump
phenomenon, the amplitude jumping up from point A to branch 3. If the frequency
continues to be swept up the steady-state amplitudes decreases along branch 3. If
the frequency is swept down, the amplitude increases along branch 3 until it reaches
point C. At this point the system loses stability and experiences pull-in, i.e., the
dimensionless amplitude reaches the value of 1. In the case of constant frequency,
and initial amplitude above branch 3, the amplitudes settle on the stable branch
3. For frequencies between σB and σC and initial amplitudes above branch 2, the
MEMS circular plate experiences pull-in. For frequencies less than σB , regardless
the value of the initial amplitude, the amplitudes settle on the stable branch 1. For
any initial amplitude bellow branch 2, and for frequencies between σB and σA, the
amplitudes settle on the stable branch 1. For any initial amplitude above branch
2, and frequencies greater than σC , the amplitudes settle on branch 3. One should
mention that for zero initial amplitude and frequencies less than σA, the amplitudes
settle one branch 1. Figures 4.3 and 4.4 show predicted time responses resulted from
numerical integration of the 6T ROM. They are in agreement with the predictions
resulted from continuation and bifurcation of 6T ROM AUTO. Figures 4.3a and
4.3c for σ = −0.08, and Figs. 4.4a and 4.4c for σ = −0.12, show time responses
for initial amplitudes U0 = 0.4 and U0 = 0.8. One can notice that depending on
the initial amplitude U0, the amplitude settles either on branch 3 or 1, which is in
agreement with AUTO predictions. Figures 4.3b and 4.3d show time responses from
zero initial amplitudes U0 = 0.0 and frequencies greater than σA. The amplitudes
settle on branch 3. Figures 4.4a and 4.4b do not contradict the existence of end points
B and C. Figures 4.4b and 4.4d show time responses from high initial amplitudes U0

= 0.8 and frequencies less than σB . For both time responses the amplitudes settle on
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Fig. 4.2 Amplitude-frequency response using Electrostatic 6T ROM and Electrostatic 2TnE MMS
E = 25, δ = 4, b = 0.025, α = 0, µ = 0, where E is the degree of the electrostatic Taylor
polynomial in MMS

branch 1. This is in agreement with 6T ROM AUTO predictions. Figure 4.5 shows the
effect of increasing the number of modes of vibration (terms) in ROM. ROMs with
two terms, three terms, four terms, five terms. and six terms are included. One can
notice that there is no significant difference between ROMs with five terms, and six
terms. This is the reason the 6T ROM is used in this research. Figure 4.6 illustrates
the convergence of MMS predictions with respect to the degree E of the Taylor
polynomial approximating the electrostatic force. The one term no epsilon model
(1TnE) is also compared to the two term no epsilon model (2TnE). As the number
of terms in the Taylor polynomial for the 2TnE model increases, the upper part of
the branches moves to lower amplitudes, toward AUTO predictions. As mentioned
before, MMS cannot predict the end points of the amplitude-frequency response.
Additionally, MMS is limited to good results in lower amplitudes, amplitudes less
than 0.2 of the gap. Overall, the change in lower amplitudes with increasing the
degree of Taylor polynomial is not significant. A polynomial of degree 25 was
deemed sufficient, as no significant changes in the predictions of 2TnE for degrees
of Taylor polynomial great than E = 25 were observed. However, MMS is not
reliable in predicting higher steady-state amplitudes.

Figure 4.7 shows the effect of voltage parameter on the amplitude-frequency
response using two methods, 6T ROM AUTO and MMS 2TnE. For a smaller voltage
of δ = 2, both methods show only one branch with a relatively small peak amplitude
and rather a linear behavior. MMS is in agreement with AUTO for amplitudes less
than 0.2 of the gap, regardless of the voltage values. As the voltage increases from δ
= 2 to δ = 3 the peak amplitude increases. As the voltage increases to δ = 4 the three
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Fig. 4.3 Electrostatic 6T ROM Time Responses: δ = 4, b = 0.025, α = 0, µ = 0: a) U0 = 0.4,
σ = −0.08, b) U0 = 0.0, σ = −0.06, c) U0 = 0.8, σ = −0.08, d) U0 = 0.0, σ = −0.04

branches 1,2, and 3 are born showing a consistent nonlinear behavior. The existence
of the unstable branch 2 explains the fact that for different initial amplitudes the
system can settle to either a small amplitude on branch 1, or a larger amplitude on
branch 3. Also in the case δ = 4 branches 2 and 3 have end points predicting the
existence of pull-in phenomenon for frequencies between σB and σC .

Figure 4.8 shows the effect of damping on the amplitude-frequency response.
This effect is investigated at high voltage δ = 4. In a similar fashion to the effect of
the voltage on the amplitude-frequency response, MMS predictions are in agreement
with 6T ROM AUTO for amplitudes lower than 0.2 of the gap. For damping parameter
values b = 0.035 and b = 0.025, the difference between MMS and 6T ROM AUTO
is quite significant in large amplitudes. Significant differences of the two methods,
MMS and 6T ROM AUTO, are seen in the case of smaller damping b = 0.025. For
higher damping b = 0.045, the peak amplitudes reduce, as well as the difference
between MMS and 6T ROM AUTO.

Figure 4.9 shows the voltage bias using 6T ROM AUTO. This bias is directly
related to Fig. 4.2. As shown in Fig. 4.9, the bias is at less than 5.5 % of the gap
distance d. This suggests that the bias does not have a significant influence on the
behavior of the system.
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Fig. 4.4 Electrostatic 6T ROM Time Responses: δ = 4, b = 0.025, α = 0, µ = 0: a) U0 = 0.8,
σ = −0.12, b) U0 = 0.8, σ = −0.125, c) U0 = 0.4, σ = −0.12, d) U0 = 0.8, σ = −0.15

Fig. 4.5 Effect of the number of modes of vibration N in ROM on the amplitude-frequency
response: δ = 4, b = 0.025, α = 0, µ = 0
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Fig. 4.6 Effect of E, the degree of the Taylor polynomial approximating the electrostatic force in
MMS, on the amplitude-frequency responses δ = 4, b = 0.025, α = 0, µ = 0

Fig. 4.7 Effect of δ, the dimensionless voltage parameter, on the amplitude-frequency response
using electrostatic 6T ROM AUTO, and electrostatic 2TnE MMS polynomial of E = 25 degree: b =
0.025, α = 0, µ = 0
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Fig. 4.8 Effect of b, the dimensionless damping parameter, on the amplitude-frequency response
using Electrostatic 6T ROM AUTO and Electrostatic 2TnE MMS polynomial of E = 25 degree, δ =
4, α = 0, µ = 0

Fig. 4.9 Voltage Bias using 6T ROM AUTO, δ = 4, b = 0.025
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4.10.2 Casimir Force Effect on Nanoelectromechanical Systems
Plates

Figure 4.10 shows the effect of the Casimir parameter α on the amplitude-frequency
response. Increasing the Casimir parameter α leads to an increase of the softening
effect, a decrease of the steady-state amplitudes for a given frequency σ in the
resonance zone, and/or a shifting of the amplitude-frequency response to lower
frequencies. MMS predictions are in agreement with 6T ROM AUTO for amplitudes
less than 0.2 of the gap, if α = 0, and amplitudes less than 0.1 of the gap if α = 0.2.
This is consistent with the fact that MMS is valid for weak nonlinearities and small
amplitudes. The increase of the Casimir parameter shifts the bifurcation point A and
the endpoints B and C to lower frequencies. The bifurcation point A is significantly
shifted to lower frequencies. Figure 4.11 shows the amplitude-frequency response

Fig. 4.10 Effect of α, the dimensionless Casimir parameter, on the amplitude-frequency response
using electrostatic and Casimir 6T ROM AUTO and 2TnE MMS polynomials of 25th degree.
δ = 4, b = 0.025, µ = 0, E is the degree of the electrostatic Taylor polynomial, C is the degree of
the Casimir Taylor polynomial. It should be noted that if α = 0, then the model used was the
electrostatic model.

in the case of Casimir effect, α = 0.2, using 6T ROM AUTO. Also time responses
using 6T ROM are shown in Figs. 4.12 and 4.13. As one can see, the two methods are
in agreement. Figure 4.12a shows a time response with an initial amplitudeU0 = 0.2
and detuning frequency σ = −0.085. This point is towards the left of bifurcation
point A, and moves away from the unstable branch 2 towards the stable branch 1.
Figure 4.12b shows a time response from U0 = 0.0 and σ = −0.08 that settles on
branch 3. This is not in disagreement with the existence of bifurcation point A. For
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the same σ = −0.085 as Fig. 4.12a, the time response in Fig. 4.12c starts now from
a U0 = 0.7 and the amplitude settles on stable branch 3. Figure 4.12d shows a point
in the lower amplitudes of branch 3. Figures 4.13a and 4.13c show time responses
for a frequency σ = −0.125 and initial amplitudes, U0 = 0.7 and U0 = 0.4,
respectively. The initial amplitude U0 = 0.4 is below the unstable branch 2, so the
amplitude settles on branch 1. In the case of U0 = 0.7, which is above branch 3,
the amplitude settles on branch 3. Figures 4.13b and 4.13d show time responses
from initial amplitude, U0 = 0.7 and frequencies σ = −0.13 and σ = −0.15, for
which the amplitudes settle on branch 1. Figure 4.14 shows the effect of the degree

Fig. 4.11 Amplitude-frequency response using Casimir 6T ROM AUTO and Casimir 6T ROM
Time Responses, δ = 4, b = 0.025, α = 0.2, µ = 0

of Taylor polynomial approximating the Casimir force, E and C are the degrees of
Taylor polynomials approximating the electrostatic and Casimir forces, respectively.
The 2TnE model is also compared with the 1TnE model. The 2TnE predicts a stronger
softening effect, which is more accurate. Furthermore, 1TnE MMS model does not
predict the existence of the three branches in higher amplitudes. In order to see the
effect of increasing the degree of the Casimir Taylor polynomial, the 2TnE model
used a 25th degree electrostatic Taylor polynomial. Overall, increasing the degree of
the Casimir Taylor polynomial shows a similar behavior to that of the electrostatic
Taylor polynomial effect, in which the branches show a stronger softening effect.
As there was no significant difference in the amplitude-frequency response between
Casimir Taylor polynomials of 20th and 25th degree, the 25th degree Casimir Taylor
polynomial was sufficient.
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Fig. 4.12 Casimir 6T ROM Time Responses, δ = 4, b = 0.025, α = 0.2, µ = 0: a) U0 = 0.2,
σ = −0.085, b) U0 = 0.0, σ = −0.08, c) U0 = 0.7, σ = −0.085, d) U0 = 0.0, σ = −0.04

4.10.3 Van der Waals Force Effect on Nanoelectromechanical
Systems Plates

Figure 4.15 shows the effect of the van der Waals parameter on the amplitude-
frequency response using 6T ROM AUTO and 2TnE MMS. The van der Waals
parameter effect on the amplitude-frequency response is similar to the effect of
Casimir parameter, it causes a reduction of the higher amplitudes for both MMS
and ROM predictions. Furthermore, it also causes a shifting of stable and unstable
branches towards lower frequencies, which can also be seen in the case of saddle-node
bifurcation point A. The lower amplitudes remain unaffected outside the resonance
zone. Figure 4.16 shows the amplitude-frequency response to include van der Waals
forces. Both 6T ROM AUTO and 6T ROM time responses are included. Time
response with U0 = 0.25 and σ = −0.08 settles to an amplitude on the stable
branch 1, Fig. 4.17a. Time response with U0 = 0.0 and σ = −0.075 settles to an
amplitude on branch 3, Fig. 4.17b. Figure 4.17c shows a time response from higher
initial amplitude U0 = 0.75 and σ = −0.08, that settles to an amplitude on branch
3. Figure 4.17d shows a time response from U0 = 0.0 and σ = −0.04, which
settles to an amplitude on branch 3. Figures 4.18a and 4.18c show time responses
at σ = −0.12 from different initial amplitudes. Figure 4.18a starts from U0 = 0.75
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Fig. 4.13 Casimir 6T ROM Time Responses, δ = 4, b = 0.025, α = 0.2, µ = 0: a) U0 = 0.7,
σ = −0.125, b) U0 = 0.7, σ = −0.13, c) U0 = 0.4, σ = −0.125, d) U0 = 0.7, σ = −0.15

and settles on stable branch 3, while 4.18c starts at U0 = 0.25 and settles on stable
branch 1. Figure 4.18b shows a point from a higher initial amplitude U0 = 0.75 and
at a frequency σ = −0.125, which is lower than the end pointsB andC that settles to
an amplitude on the stable branch 1. This is not in disagreement with the endpoints
predicted by AUTO. Figure 4.18d shows behavior similar to that of Fig. 4.18b.
Figure 4.19 shows the effect of the degree of the Taylor polynomial approximating
the van der Waals force, where E and V are the degrees of the Taylor polynomials
approximating the electrostatic force and the van der Waals force, respectively. As
in the Casimir case and the Electrostatic case, the 2tnE model of the van der Waals
case is more accurate than the 1TnE. Therefore the Taylor polynomials in the 2TnE
model are used. The 1TnE MMS model also shows no splitting of the branches 2
and 3, unlike the 2TnE. As the degree of the Taylor polynomial increases, the 2TnE
MMS model shows a behavior similar to that predicted by the 6T ROM AUTO. One
can notice that there is no significant difference in predictions between V = 20 and
V = 25. Therefore a van der Waals Taylor polynomial of 25th degree has been used.
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Fig. 4.14 Effect of C, the degree of the Taylor polynomial approximating the Casimir force in
MMS, on the amplitude-frequency response using 1TnE MMS E = 3 and 2TnE MMS E = 25,
δ = 4, b = 0.025, α = 0.2, µ = 0, E is the degree of electrostatic Taylor polynomial, C is the
degree of the Casimir Taylor polynomial

Fig. 4.15 Effect of µ, the dimensionless van der Waals parameter, on the amplitude-frequency
response using electrostatic and van der Waals 6T ROM AUTO and 2TnE MMS polynomials of
25th degree, δ = 4, b = 0.025, µ = 0, E is the degree of electrostatic Taylor polynomial, V is the
degree of the van der Waals Taylor polynomial. It should be noted that if µ = 0, then the model
used was the electrostatic model.
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Fig. 4.16 Amplitude-frequency response using van der Waals 6T ROM AUTO and van der Waals
6T ROM Time response, δ = 4, b = 0.025, α = 0, µ = 0.2

4.10.4 Stability

Figure 4.20 shows points of the amplitude-frequency response that have been tested
for stability. The eigenvalues λ1 and λ2 of the Jacobian Eq. (4.30) are given in
Table 4.7. One can notice that points D, F and G have complex eigenvalues with
negative real parts which correspond to stable spiral points. Point E has two real
eigenvalues, one positive and one negative, which corresponds to a saddle point,
which is unstable.This does not contradict the stability of branches predicted by 6T
ROM AUTO.

Table 4.7 Stability testing

Point on Fig. 4.20 a0 γ0 σ λ1,λ2

D 0.00580 0.05 -0.11763 -0.01249+0.25708i, -0.01249-0.25708i
E 0.08843 0.8 0.06196 -0.07606, 0.05253
F 0.11703 2.0 -0.05943 -0.01127+0.09531i,-0.01127-0.09531i
G 0.00482 3.1 0.01996 -0.01249+0.30561i,-0.01249-0.30561i
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Fig. 4.17 van der Waals 6T ROM Time Responses, δ = 4, b = 0.025, α = 0, µ = 0.2: a)
U0 = 0.25, σ = −0.08, b) U0 = 0.0, σ = −0.075, c) U0 = 0.75, σ = −0.08 , d) U0 = 0.0,
σ = −0.04

4.11 Discussion and Conclusions

The novelty of this research consists of predicting the amplitude-frequency response
of superharmonic resonance of second-order of electrostatically actuated clamped
M/NEMS circular plates to include Casimir and van der Waals effects. Two MMS
models of hard excitations have been proposed, and an investigation on the degree
of Taylor polynomials approximating the electrostatic, Casimir, and van der Waals
forces has been conducted. Several ROMs have been used in this work, and it has been
concluded that the ROM using six modes of vibrations (6T) is the most viable method
in all amplitudes, lower and higher. The 6T ROM has been solved using AUTO, a
software package for continuation and bifurcation, and numerical integration Matlab
for time responses. 6T ROM AUTO and 6T ROM time responses were in agreement.

Overall MMS is a fast and easy way to predict the frequency response of clamped
circular plate resonators. MMS predicts the lower amplitudes quite well, as it matches
those of the 6T ROM. Furthermore, for parameters in which MMS branches are split,
the lack of endpoints B and C of branches 2 and 3 in the MMS model is a serious
deficiency in predicting the occurrence of pull-in. Also MMS does not necessarily
provide very accurate results in high amplitudes and definitely cannot predict B
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Fig. 4.18 van der Waals, 6T ROM Time Responses, δ = 4, b = 0.025, α = 0, µ = 0.2: a)
U0 = 0.75, σ = −0.12, b) U0 = 0.75, σ = −0.125, c) U0 = 0.25, σ = −0.12, d) U0 = 0.75,
σ = −0.15

and C. However, MMS predicts the amplitude-frequency response quite well in the
case of higher damping and/or low voltage. Secondary resonance superharmonic
of second-order has been reported in the literature (Kim and Lee, 2015; Liu et al,
2014), for AC electrostatic actuation and for different structures than plates. Najar
et al (2010); Kim and Lee (2015) have shown similar results, although for different
structures and a hardening effect rather than softening effect as in this research.

In this paper two models for hard excitations were used for MMS, a one term no
epsilon model (1TnE) and a two term no epsilon model (2TnE) for the electrostatic
actuation. 2TnE was the most accurate of the two and it was used to investigate the
effect of the degrees of the MMS Taylor polynomials approximating electrostatic,
Casimir and van der Waals forces. This investigation showed that beyond the Taylor
polynomial of 25th degree, there is no significant difference in the predictions. The
ROM shows various benefits when compared to the MMS models. 6T ROM AUTO
was able to predict the endpoints B and C, and the stable branches are in agreement
wit the predictions of time responses. Furthermore, the convergence of the ROM
showed that 6T ROM was deemed sufficient for this research. These methods were
used to investigate the effects influences of different parameters, such as voltage,
and damping on the amplitude-frequency response. Increasing the voltage led to a
stronger nonlinear behavior, such as the appearance of the unstable branch 2, when
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Fig. 4.19 Effect of V , the degree of the Taylor polynomial approximating the van der Waals force
in MMS on the amplitude-frequency response using 1TnE MMS E = 3 and 2TnE MMS E = 25,
δ = 4, b = 0.025, α = 0, µ = 0.2, E is the degree of the electrostatic Taylor polynomial, V is the
degree of the van der Waals Taylor polynomial.

Fig. 4.20 Stability Testing, δ = 4, b = 0.025, α = 0, µ = 0.2
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the branches were split. Increasing damping led to a more linear behavior. The
increase of the Casimir and the van der Waals parameters, led to an increase of the
softening effect, and therefore a decrease of higher amplitudes. The lower amplitudes
did not differ from the electrostatic models.
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